BibTex Citation Data :
@article{J.Gauss30385, author = {Tomi Ardi and Rukun Santoso and Alan Prahutama}, title = {IMPLEMENTASI SUBSET AUTOREGRESSIVE MENGGUNAKAN PAKET FITAR}, journal = {Jurnal Gaussian}, volume = {6}, number = {4}, year = {2017}, keywords = {Time Series, Time Series Non-stasioner, Subset AR, FitAR Package}, abstract = { Time series data analysis is one of the important points in statistics that is a time-dependent analysis. The commonly used model for time series data is ARIMA (Autoregressive Integrated Moving Average) or often also called the Box-Jenkins time series method. A model of ARIMA used in time clock data forecasting is the AR subset (autoregressive). The AR subset model is suitable for a long time series with a more than 5th order lag. The statistical software used is the R. time series AR subset approach on R using the FitAR package. The main function of the FitAR package is SelectModel and FitAR. SelectModel function to get the model automatically while FitAR is used to determine the temporary suspect model. Data used in the form of dataset contained in package FitAR that is SeriesA. The SeriesA data is data about the chemical concentration process observed every 2 hours for 17 days. SeriesA is processed using FitAR package so that the best model is AR [1,2,7]. Keywords : Time Series, Time Series Non-stasioner, Subset AR, FitAR Package }, issn = {2339-2541}, pages = {510--519} doi = {10.14710/j.gauss.6.4.510-519}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/30385} }
Refworks Citation Data :
Time series data analysis is one of the important points in statistics that is a time-dependent analysis. The commonly used model for time series data is ARIMA (Autoregressive Integrated Moving Average) or often also called the Box-Jenkins time series method. A model of ARIMA used in time clock data forecasting is the AR subset (autoregressive). The AR subset model is suitable for a long time series with a more than 5th order lag. The statistical software used is the R. time series AR subset approach on R using the FitAR package. The main function of the FitAR package is SelectModel and FitAR. SelectModel function to get the model automatically while FitAR is used to determine the temporary suspect model. Data used in the form of dataset contained in package FitAR that is SeriesA. The SeriesA data is data about the chemical concentration process observed every 2 hours for 17 days. SeriesA is processed using FitAR package so that the best model is AR [1,2,7].
Keywords : Time Series, Time Series Non-stasioner, Subset AR, FitAR Package
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics