BibTex Citation Data :
@article{J.Gauss30243, author = {Reza Fitriani and Hasbi Yasin and Tarno Tarno}, title = {PENANGANAN KLASIFIKASI KELAS DATA TIDAK SEIMBANG DENGAN RANDOM OVERSAMPLING PADA NAIVE BAYES (Studi Kasus: Status Peserta KB IUD di Kabupaten Kendal)}, journal = {Jurnal Gaussian}, volume = {10}, number = {1}, year = {2021}, keywords = {Naive Bayes; Random Oversampling; G-mean}, abstract = { The Family Planning Program (KB) launched by the Government of Indonesia to address the problem of population control does not always produce the desired program results. In 2017, there were 7 users of the IUD contraceptive type of contraceptive who failed from 1,102 new IUD users in Kendal Regency so that the ratio of success and failure to the IUD KB program when compared to users of the new IUD KB is 0.64%: 99.36% . The ratio of success and failure of family planning programs which tend to be unbalanced makes it difficult to predict. One of the handling imbalanced data is oversampling, for example using Random Oversampling (ROS). Naive Bayes is used for classification because it’s easy and efficient learning model. The data in this study used 14 independent variables and 1 dependent variable. The results of this study indicate that the G-mean of Naive Bayes is less than 60%. The G-mean of ROS-Naive Bayes is 96.6%. It can be concluded that in this research, the ROS-Naive Bayes method is better than the Naive Bayes method for detecting the success status of IUD family planning in Kendal Regency. Keywords : Naive Bayes, Random Oversampling, G-mean }, issn = {2339-2541}, pages = {11--20} doi = {10.14710/j.gauss.10.1.11-20}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/30243} }
Refworks Citation Data :
The Family Planning Program (KB) launched by the Government of Indonesia to address the problem of population control does not always produce the desired program results. In 2017, there were 7 users of the IUD contraceptive type of contraceptive who failed from 1,102 new IUD users in Kendal Regency so that the ratio of success and failure to the IUD KB program when compared to users of the new IUD KB is 0.64%: 99.36% . The ratio of success and failure of family planning programs which tend to be unbalanced makes it difficult to predict. One of the handling imbalanced data is oversampling, for example using Random Oversampling (ROS). Naive Bayes is used for classification because it’s easy and efficient learning model. The data in this study used 14 independent variables and 1 dependent variable. The results of this study indicate that the G-mean of Naive Bayes is less than 60%. The G-mean of ROS-Naive Bayes is 96.6%. It can be concluded that in this research, the ROS-Naive Bayes method is better than the Naive Bayes method for detecting the success status of IUD family planning in Kendal Regency.
Keywords: Naive Bayes, Random Oversampling, G-mean
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics