skip to main content

PEMODELAN INDEKS PEMBANGUNAN MANUSIA PROVINSI JAWA BARAT, JAWA TIMUR DAN JAWA TENGAH TAHUN 2019 DENGAN MENGGUNAKAN METODE REGRESI LOGISTIK ORDINAL

*Meylita Sari  -  Departemen Statistika, Institut Teknologi Sepuluh Nopember, Indonesia
Purhadi Purhadi  -  Departemen Statistika, Institut Teknologi Sepuluh Nopember, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Ordinal logistic regression is one of the statistical methods to analyze response variables (dependents) that have an ordinal scale consisting of three or more categories. Predictor variables (independent) that can be included in the model are category or continuous data consisting of two or more  variables. Human Development Index (HDI) is an indicator of the success of human development in a region and can be categorized into medium, high and very high. Based on the further categorization, in this study would like to know more about the HDI model using the Ordinal Logistic Regression method, with predictor variables that are suspected to affect, so that it is obtained in West Java Province is influenced by variable poverty rates and clean water sources with a classification accuracy value of 77.78%, Central Java Province is influenced by variable economic growth rate based on constant price GDP, poverty rate and open unemployment rate with a classification accuracy value of 82.85%. East Java province is influenced by variable poverty rate and open unemployment rate with a classification accuracy value of 76.31%. As well as in the three provinces in Java Island is influenced by variable economic growth rate, variable poverty rate, variable clean water source with a classification accuracy value of 73%.

 

Keywords : Ordinal Logistic Regression, HDI, Classification Accuracy

Fulltext View|Download
Keywords: Ordinal Logistic Regression, HDI, Classification Accuracy

Article Metrics:

  1. Abreau, M. N. S et al. (2008), “ Ordinal logistic regression models: application in quality of life studies”, Cadernos de Saude Publica, Vol.24, suppl
  2. Agresti, A. (2002), “Categorical Data Analysis, 2nd edition, John Willey and Sons, Inc.”, Hoboken, New Jersey
  3. BPS (2008), Indeks Pembangunan Manusia 2006-2007. BPS, Jakarta
  4. Diana, R. (2009). Uji Kesamaan Vektor Parammeter Model Linier Multivariat : Studi Kasus Faktor-faktor yang mempengaruhi IPM tahun 2007. Jurusan Statistika-ITS, Surabaya
  5. Fatimah, Citra. (2010). Pemodelan IPM Provinsi Jawa Timur, Jawa Tengah, Jawa Barat Dan Sumatera Utara Dengan Metode Regresi Logistik Ordinal. Jurusan Statistika-ITS, Surabaya
  6. Hosmer, D. W. dan Lemeshow, S. (2000). Applied Logistic Regression. John Wiley and Son, New York
  7. Lutfia,A. (2017). Analisis Regresi Logistik Multinomial (studi kasus: Jenis pelanggaran Lalu Lintas Kota Surabaya). Jurusan Vokasi Statistika-ITS, Surabaya
  8. Pentury, T, dkk (2016). Analisis Regresi Logistik Ordinal (Studi kasus: Akreditasi SMA di Kota Ambon).Jurusan Matematika-Univeristas Pattimura, Ambon

Last update:

No citation recorded.

Last update:

No citation recorded.