skip to main content

PEMODELAN ANGKA HARAPAN HIDUP PROVINSI JAWA TENGAH MENGGUNAKAN ROBUST SPATIAL DURBIN MODEL

*Maghfiroh Hadadiah Mukrom  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Spatial regression is a model used to determine relationship between response variables and predictor variables that gets spatial influence. If there are spatial influences on both variables, the model that will be formed is Spatial Durbin Model. One reason for the inaccuracy of the spatial regression model in predicting is the existence of outlier observations. Removing outliers in spatial analysis can change the composition of spatial effects on data. One way to overcome of outliers in the spatial regression model is by using robust spatial regression. The application of M-estimator is carried out in estimating the spatial regression parameter coefficients that are robust against outliers. The aim of this research is obtaining model of number of life expectancy in Central Java Province in 2017 that contain outliers. The results by applying M-estimator to estimating robust spatial durbin model regression parameters can accommodate the existence of outliers in the spatial regression model. This is indicated by the change in the estimating coefficient value of the robust spatial durbin model regression parameter which can increase adjusted R2 value becomes 93,69% and decrease MSE value becomes 0,12551.

Keywords: Outliers, M-estimator, Spatial Durbin Model, Number of Life Expectancy.

Fulltext View|Download
Keywords: Outliers, M-estimator, Spatial Durbin Model, Number of Life Expectancy.

Article Metrics:

  1. Anselin, L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Academic Publishers
  2. Badan Pusat Statistik (BPS). 2018. Jawa Tengah Dalam Angka 2018. Semarang: Badan Pusat Statistik Jawa Tengah
  3. Barnett, V., dan Lewis, T. 1994. Outliers in Statistical Data (3rd ed.). New York: John Wiley and Sons, Inc
  4. Chen, C. 2002. Robust Regression and Outlier Detection with The ROBUSTREG Procedure, pp 265-27. SAS Institute Inc., Lary, NC
  5. Conover, W. J. 1980. Practical Nonparametric Statistics (2nd ed). New York: John Wiley and Sons, Inc
  6. Dinas Kesehatan. 2018. Profil Kesehatan Provinsi Jawa Tengah Tahun 2017. Semarang: Dinas Kesehatan Provinsi Jawa Tengah
  7. Draper, N. R., dan Smith, H. 1998. Applied Regression Analysis (3rd ed.). New
  8. York: John Wiley and Sons
  9. Fox, J. 2002. Robust Regression : Appendix to An R and S-Plus Companion to Applied Regression
  10. Goodchild, M. F. 1986. Spatial Autocorrelation. Norwich: Geo Books
  11. Gujarati, D. N. 2004. Basic Econometrics 4th Edition. New York: The McGraw-Hill Companies
  12. LeSage, J. P. 1999. The Theory and Practice of Spatial Econometrics. Ohio: Department of Economics, University of Toledo
  13. LeSage, J., dan Pace, R. K. 2009. Introduction to Spatial Econometrics. New York: Taylor & Francis Group
  14. Montgomery, D. C., dan Peck, E. A. 1992. Introduction To Linier Regression Analysis. New York: John Wiley and Sons, Inc
  15. Montgomery, D. C., dan Runger, G. C. 2003. Applied Statistics and Probability for Engineers. New York: John Wiley & Sons, Inc
  16. Ramadani, I. R., Rahmawati, R., Hoyyi, A. 2013. “Analisis Faktor-faktor yang Mempengaruhi Gizi Buruk Balita di Jawa Tengah Dengan Metode Spatial Durbin Model”. Jurnal Gaussian. Vol. 2, No. 4 : Hal. 333-342. Universitas Diponegoro, Semarang
  17. Shekhar, S., Lu, C. T., and Zhang, P. 2003. “A Unified Approach to Detecting Spatial Outliers”. GeoInformatica 7:2, pp. 139-166
  18. Wuryandari, T., Hoyyi, A., Kusumawardani, D., Rahmawati, D. 2014. “Identifikasi Autokorelasi Spasial Pada Jumlah Pengangguran di Jawa Tengah Menggunakan Indeks Moran”. Jurnal Media Statistika. Vol. 7, No. 1 : Hal. 1-10. Universitas Diponegoro

Last update:

No citation recorded.

Last update:

No citation recorded.