skip to main content

METODE MODIFIED JACKKNIFE RIDGE REGRESSION DALAM PENANGANAN MULTIKOLINIERITAS (STUDI KASUS INDEKS PEMBANGUNAN MANUSIA DI JAWA TENGAH)

*Arya Huda Arrasyid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Abdul Hoyyi  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The human development index is a value where the value showed the measure of living standards comparison in a region. The Human Development Index is influenced by several factors, one of them is the education factor that is the average years of schooling and expected years of schooling. A statistical method to find the correlation between the independent variable and the dependent variable can be conducted using the linear regression method. Linear regression requires several assumptions, one of which is the multicollinearity assumption. If the multicollinearity assumption is not fulfilled, another alternative is needed to estimate the regression parameters. One method that can be used to estimate regression parameters is the ridge regression method with an ordinary ridge regression estimator. Ordinary ridge regression then developed more into several methods, such as generalized ridge regression, jackknife ridge regression, and modified jackknife ridge regression method. The generalized Ridge Regression method causes a reduction to variance in linear regression, while the jackknife ridge regression method is obtained by resampling jackknife process on the generalized ridge regression method. Modified jackknife ridge regression is a combination of generalized ridge regression and jackknife ridge regression method. In this journal, the three ridge regression methods will be compared based on the Mean Squared Error obtained in each method. The results of this study indicate that the jackknife ridge regression method has the smallest MSE value.

 

Keywords: Generalized Ridge Regression, Jackknife Ridge Regression, Modified Jackknife Ridge Regression, Multicolinearity

 

 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject Generalized Ridge Regression, Jackknife Ridge Regression, Modified Jackknife Ridge Regression, Multicolinearity
Type Research Instrument
  Download (483KB)    Indexing metadata
Keywords: Generalized Ridge Regression, Jackknife Ridge Regression, Modified Jackknife Ridge Regression, Multicolinearity

Article Metrics:

  1. Akinwande, M. O., Dikko, H. G., & Samson, A. 2015. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Scientific Research Publishing Inc, 754-767
  2. Batah, F. M., Ramanathan, T. V., & Gore, S. D. 2008. The Efficiency of Modified Jackknife and Ridge Type Regression Estimators: A Comparison. Surveys in Mathematics and Its Applications, 3(6), 111-122
  3. Devita, H., Sukarsa, I. G., & Kencana, I. E. 2014. Kinerja Jackknife Ridge Regression dalam Mengatasi Multikolinieritas. E-Jurnal Matematika, 3(4), 146-153
  4. Gujarati, D. 1991. Ekonometrika Dasar. Diterjemahkan oleh: Zain S. Jakarta: Erlangga. Terjemahan dari: Basic Econometrics
  5. Hoerl, A., & Kennard, R. 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Journal Storage, 12(1), 55-67
  6. Khurana, M., Chaubey, Y. P., & Chandra, S. 2014. Jackknifing the Ridge Regression Estimator: A Revisit. Communications in Statistics, 43(24), 5249-5262
  7. Kim, T. K. 2015. T test as a parametric . Korean Journal of Anesthesiology, 68(6), 540-546
  8. Kurniawan, R., & Yuniarto, B. 2016. Analisis Regresi Dasar dan Penerapannya dengan R. (E. Wahyudin, Ed.) Depok: Prenadamedia Group
  9. Manurung, J., Manurung, A., & Saragih, F. 2005. Ekonometrika Teori dan Aplikasinya. (R. Touran, Ed.) Jakarta: PT Elex Media Komputindo
  10. Ma'unah, S. 2016. Estimasi Skewness (Kemiringan) dengan Menggunakan Metode Bootstrap dan Metode Jackknife. Universitas Negeri Semarang. Semarang: Library Unnes
  11. Montgomery, D., A. Peck, E., & Vining, G. 1992. Introduction To Linier Regression Analysis. (D. Balding, N. Cressie, G. Fitzmaurice, H. Goldstein, I. Johnstone, G. Molenberghs, et al., Eds.) New York: John Wiley and Sons Inc
  12. Singh, B., Chaubey, Y., & Dwivedi, T. 1986. An Almost Unbiased Ridge Estimator. The Indian Journal of Statistics, 48(3), 342-346
  13. Utami, N. T., Sukarsa, I. G., & Kencana, I. E. 2013. Penerapan Metode Generalized Ridge Regression dalam Mengatasi Masalah Multikolinieritas. E-Jurnal Matematika, 2(1), 54-59

Last update:

No citation recorded.

Last update:

No citation recorded.