skip to main content

ANALISIS SENTIMEN PEMINDAHAN IBU KOTA NEGARA DENGAN KLASIFIKASI NAÏVE BAYES UNTUK MODEL BERNOULLI DAN MULTINOMIAL

*Nabila Surya Wardani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Text mining is a variation on a field called data mining that tries to find interesting patterns from large databases. Indonesian President affirmed that the capital would be moved to East Kalimantan on August 26, 2019. That planning would receive pros and cons from public. Sentiment analysis is part of text mining that typically involves taking data from opinion, comment, or response. Sentiment analysis is the choice to do on this topic to get results about the public’s opinion. As the most used social media in Indonesia, Youtube is able to be data source by crawling the comments on a video uploaded by Kompas TV channel. Those comments were crawled on October 15, 2019, and selected 1500 latest comments (August 26 – October 12, 2019). The selected comments get transformed by using data pre-processing technique that involves case folding, removing mention, unescaping HTML, removing numbers, removing punctuation, text normalization, stripping whitespace, stopwords removal, tokenizing, and stemming. Labeling of sentiment class uses the sentiment scoring technique. The number of negative comments is 849, while the number of positive comments is 651. The ratio between training data and testing data is 80%: 20%. The classification method used to do sentiment analysis is the Naive Bayes Classifier for Bernoulli and Multinomial model. Bernoulli model only uses occurrence information, whereas the multinomial model keeps track of multiple occurrences. The results show that Bernoulli Naïve Bayes has a 93,45% level of sensitivity (recall) and Multinomial Naïve Bayes has a 90,19% level of sensitivity (recall). It means that both Bernoulli and Multinomial have a good result for this research.

 

 


Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (25KB)    Indexing metadata
Keywords: Text Mining, Relocation of Indonesia’s Capital, Youtube, Bernoulli Naïve Bayes, Multinomial Naïve Bayes, Sensitivity (Recall).

Article Metrics:

  1. Alasadi, S. A., dan Bhaya, W. S. (2017). Review of Data Preprocessing Techniques in Data Mining. Journal of Engineering and Applied Science
  2. Bappenas. (2019). Dampak Ekonomi dan Skema Pembiayaan Pemindahan Ibu Kota Negara. Bappenas: https://www.bappenas.go.id/files/diskusi-ikn. Diakses : 05 Februari 2020
  3. Batrinca, B., dan Treleaven, P. (2014). Social Media Analytics: A Survey of Techniques, Tools And Platforms. AI dan Society Journal
  4. BPS. (2015). Profil Penduduk Indonesia Hasil Supas 2015. Badan Pusat Statistika: https://www.bps.go.id/publication/2016/11/30/63daa471092bb2cb7c1fada6/profil-penduduk-indonesia-hasil-supas-2015.html. Diakses : 01 Februari 2020
  5. Ghoneim, S. (2019). Accuracy, Recall, Precision, F-Score dan Specificity, Which to Optimize On? Toward Data Science: https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124. Diakses: 20 Februari 2020
  6. Hootsuite, W. A. (2019). Hootsuite. The Global State of Digital in 2019 Report: https://hootsuite.com/pages/digital-in-2019. Diakses : 27 Januari 2020
  7. Indriani, A. (2014). Klasifikasi Data Forum Dengan Menggunakan Metode Naïve Bayes Classifier. Seminar Nasional Aplikasi Teknologi Informasi (SNATI)
  8. Ling, J., Kencana, I. P. E. N. dan Oka, T. B., 2014. Analisis Sentimen Menggunakan Metode Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. E-Jurnal Matematika, Volume 03
  9. Manning, C., Raghavan, P., dan Schütze, H. (2009). An Introduction to Information Retrieval. Cambridge: Cambridge University Press
  10. McCallum, A., dan Nigam, K. (1998). A Comparison of Event Models for Naive Bayes Text Classification. Proceedings in Workshop on Learning for Text Categorization. Hal. 41-48
  11. Rahman, A., Wiranto, dan Doewes, A. (2017). Online News Classification Using Multinomial Naive. ITSMART: Jurnal Ilmiah Teknologi dan Informasi. Volume. 06
  12. Ratniasih, L. N., Sudarma, M. dan Gunantara, N., 2017. Penerapan Text Mining dalam Spam Filtering untuk Aplikasi Chat. Teknologi Elektro. Volume 16
  13. Rozi, I. F., Pramono, S. H. dan Dahlan, E. A., 2012. Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini Publik. Jurnal EECCIS. Volume 6
  14. Salton, G., 1989. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc
  15. Saputra, P. Y., 2017. Implementasi Teknik Crawling Untuk Pengumpulan Data Dari Media Sosial Twitter. Jurnal Dinamika Dotcom. Volume 08
  16. Silalahi, S. A. F., 2019. Dampak Ekonomi dan Risiko Pemindahan Ibu Kota Negara. Kajian Singkat Terhadap Isu Aktual dan Strategis. Volume 11
  17. Tessem, B., Bjørnestad , S., Chen, W. & Nyre, L., (2015). Word Cloud Visualisation of Locative Information. Journal of location Based services, Volume 09, Hal. 254-272
  18. Wahid, D. H. dan Azhari, S., 2016. Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. IJCCS. Volume 10
  19. Yulianto, A., Herdiani, A. dan Sardi, I. L., 2019. Klasifikasi Keberpihakan Tweet Menggunakan Multinomial Naïve Bayes. e-Proceeding of Engineering. Volume 06, Hal. 9078 - 9085

Last update:

No citation recorded.

Last update:

No citation recorded.