BibTex Citation Data :
@article{J.Gauss10936, author = {Bitoria Niashinta and Dwi Ispriyanti and Abdul Hoyyi}, title = {PENDUGAAN AREA KECIL TERHADAP PENGELUARAN PER KAPITA DI KABUPATEN SRAGEN DENGAN PENDEKATAN KERNEL}, journal = {Jurnal Gaussian}, volume = {5}, number = {1}, year = {2016}, keywords = {Direct Estimation, Small Area Estimation (SAE), Kernel Gaussian}, abstract = { Data of Social Survey and Economic National is a relatively small sample of data, so that data is called small area. Estimation of parameter in small area can be done in two ways, there are direct estimation and indirect estimation. Direct estimation is unbias estimation but give a high variance because from small sample of data. The technique that use to increase efectivity of sample size is indirect estimation or called Small Area Estimation (SAE). SAE is done by adding auxiliary variable. on estimating parameter. Assumed that auxiliary variable has a linear correlation with the direct estimation. If that assumption is incomplete, use an nonparametric approaching. This research is using Kernel Gaussian approaching to build a correlation between direct estimation which expenditure per capita and auxiliary variable which population density. Evaluation of estimation result is done by comparing the value of direct estimation variance with the value of indirect estimation variance using Kernel Gaussian approaching. The result of parameter estimation which approached by SAE is the best estimation, because it produce the small value of variance that is 5,31275, while the value of direct estimator variance is 6,380522. Keywords : Direct Estimation, Small Area Estimation (SAE), Kernel Gaussian }, issn = {2339-2541}, pages = {71--80} doi = {10.14710/j.gauss.5.1.71-80}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10936} }
Refworks Citation Data :
Data of Social Survey and Economic National is a relatively small sample of data, so that data is called small area. Estimation of parameter in small area can be done in two ways, there are direct estimation and indirect estimation. Direct estimation is unbias estimation but give a high variance because from small sample of data. The technique that use to increase efectivity of sample size is indirect estimation or called Small Area Estimation (SAE). SAE is done by adding auxiliary variable. on estimating parameter. Assumed that auxiliary variable has a linear correlation with the direct estimation. If that assumption is incomplete, use an nonparametric approaching. This research is using Kernel Gaussian approaching to build a correlation between direct estimation which expenditure per capita and auxiliary variable which population density. Evaluation of estimation result is done by comparing the value of direct estimation variance with the value of indirect estimation variance using Kernel Gaussian approaching. The result of parameter estimation which approached by SAE is the best estimation, because it produce the small value of variance that is 5,31275, while the value of direct estimator variance is 6,380522.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics