BibTex Citation Data :
@article{J.Gauss10243, author = {Yani Kristiani and Diah Safitri and Dwi Ispriyanti}, title = {KLASIFIKASI KELOMPOK RUMAH TANGGA DI KABUPATEN BLORA MENGGUNAKAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) DAN FUZZY K-NEAREST NEIGHBOR (FK-NN)}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {Classification, MARS, FK-NN, APER, SUSENAS, Blora}, abstract = { Good classification method will result on less classification error. Classification method developed rapidly. Two of the existing classification methods are Multivariate Adaptive Regression Spline (MARS) and Fuzzy K-Nearest Neighbor (FK-NN). This research aims to compare the classification of poor household and prosperous household based on per capita income which has been converted according to the poverty line between MARS and FK-NN method. This research used secondary data in the form of result of National Economy and Social Survey (SUSENAS) in Blora subdistrict in 2014. The result of the classification was evaluated using APER. The best classification result using MARS method is by using the combination of BF= 76, MI= 3, MO= 1 because it will result on the smallest Generalized Cross Validation (GCV) and the APER is 10,119 %. The best classification result using FK-NN method is by using K=9 because it will result on the smallest error and the APER is 9,523 %. The APER calculation shows that the classification of household in Blora subdistrict using FK-NN method is better than using MARS method. Keywords : Classification, MARS, FK-NN, APER, SUSENAS, Blora }, issn = {2339-2541}, pages = {1077--1085} doi = {10.14710/j.gauss.4.4.1077-1085}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10243} }
Refworks Citation Data :
Good classification method will result on less classification error. Classification method developed rapidly. Two of the existing classification methods are Multivariate Adaptive Regression Spline (MARS) and Fuzzy K-Nearest Neighbor (FK-NN). This research aims to compare the classification of poor household and prosperous household based on per capita income which has been converted according to the poverty line between MARS and FK-NN method. This research used secondary data in the form of result of National Economy and Social Survey (SUSENAS) in Blora subdistrict in 2014. The result of the classification was evaluated using APER. The best classification result using MARS method is by using the combination of BF= 76, MI= 3, MO= 1 because it will result on the smallest Generalized Cross Validation (GCV) and the APER is 10,119 %. The best classification result using FK-NN method is by using K=9 because it will result on the smallest error and the APER is 9,523 %. The APER calculation shows that the classification of household in Blora subdistrict using FK-NN method is better than using MARS method.
Keywords: Classification, MARS, FK-NN, APER, SUSENAS, Blora
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics