BibTex Citation Data :
@article{J.Gauss10227, author = {Lintang Nurkhasanah and Suparti Suparti and Sudarno Sudarno}, title = {PERBANDINGAN METODE RUNTUN WAKTU FUZZY-CHEN DAN FUZZY-MARKOV CHAIN UNTUK MERAMALKAN DATA INFLASI DI INDONESIA}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {fuzzy time series, Markov chain , MSE, MAPE.}, abstract = { Inflation data are financial time series data which often violate assumption if it is modeled with ARIMA Box-Jenkins classic method. Therefore, to forecast inflation data are used forecast method which has not requirement classic assumptions, like as fuzzy time series method. Fuzzy time series is a method of predicting data that use principles of fuzzy as basis. Many researches has been developed about this method, such as fuzzy time series developed by Chen (1996) and fuzzy time series-Markov chain developed by Tsaur (2012). In this case, both methods are used to predict inflation data in Indonesia. Result of predicting from both methods are compared with MSE value to in sample data. Method of fuzzy time series-Chen get MSE value 0,656, whereas method of fuzzy time series-Markov chain get MSE value 0,216. Because of this reason, method of fuzzy time series-Markov chain get smallest MSE value. So, this method as the best method. Furthermore, to evaluate the best of predicting model used MAPE value to out sample data. The MAPE value in method of fuzzy time series-Markov chain is 6,610%. As conclusion, model of fuzzy time series Markov chain have best performance. Keywords : fuzzy time series, Markov chain , MSE, MAPE. }, issn = {2339-2541}, pages = {917--926} doi = {10.14710/j.gauss.4.4.917-926}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10227} }
Refworks Citation Data :
Inflation data are financial time series data which often violate assumption if it is modeled with ARIMA Box-Jenkins classic method. Therefore, to forecast inflation data are used forecast method which has not requirement classic assumptions, like as fuzzy time series method. Fuzzy time series is a method of predicting data that use principles of fuzzy as basis. Many researches has been developed about this method, such as fuzzy time series developed by Chen (1996) and fuzzy time series-Markov chain developed by Tsaur (2012). In this case, both methods are used to predict inflation data in Indonesia. Result of predicting from both methods are compared with MSE value to in sample data. Method of fuzzy time series-Chen get MSE value 0,656, whereas method of fuzzy time series-Markov chain get MSE value 0,216. Because of this reason, method of fuzzy time series-Markov chain get smallest MSE value. So, this method as the best method. Furthermore, to evaluate the best of predicting model used MAPE value to out sample data. The MAPE value in method of fuzzy time series-Markov chain is 6,610%. As conclusion, model of fuzzy time series Markov chain have best performance.
Keywords : fuzzy time series, Markov chain , MSE, MAPE.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics