BibTex Citation Data :
@article{J.Gauss10136, author = {Erfan Sofha and Hasbi Yasin and Rita Rahmawati}, title = {KLASIFIKASI DATA BERAT BAYI LAHIR MENGGUNAKAN PROBABILISTIC NEURAL NETWORK DAN REGRESI LOGISTIK (Studi Kasus di Rumah Sakit Islam Sultan Agung Semarang Tahun 2014)}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {BWI; LBWI; PNN; Logistic Regression; Classification}, abstract = { Birth Weight Infant (BWI) is the baby’s weight weighed in an hour after being born. Factors that may influence the BWI such as maternal age, length of gestation, body weight, height, blood pressure, hemoglobin and parity. One possibility of BWI is Low Birth Weight Infant (LBWI) (BWI < 2500 gram). LBWI is one of the causes of infant mortality. This study use the Probabilistic Neural Network (PNN) and Logistic Regression to classify the birth weight of infant in RSI Sultan Agung Semarang along the year of 2014. This study’s aims are to know the factors that affect the BWI by using logistic regression and finally finding the best method between PNN and logistic regression methods in classifying the BWI data. As a result, gestation, body weight and hemoglobin are the factors that affect the BWI in RSI Sultan Agung Semarang. The accuracy of PNN classification method on training data is 100%, which is better than the logistic regression method giving only about 88,2%, while the testing data has the same great accuracy at 86,67%. Keywords: BWI, LBWI, PNN, Logistic Regression, Classification }, issn = {2339-2541}, pages = {815--824} doi = {10.14710/j.gauss.4.4.815-824}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10136} }
Refworks Citation Data :
Birth Weight Infant (BWI) is the baby’s weight weighed in an hour after being born. Factors that may influence the BWI such as maternal age, length of gestation, body weight, height, blood pressure, hemoglobin and parity. One possibility of BWI is Low Birth Weight Infant (LBWI) (BWI < 2500 gram). LBWI is one of the causes of infant mortality. This study use the Probabilistic Neural Network (PNN) and Logistic Regression to classify the birth weight of infant in RSI Sultan Agung Semarang along the year of 2014. This study’s aims are to know the factors that affect the BWI by using logistic regression and finally finding the best method between PNN and logistic regression methods in classifying the BWI data. As a result, gestation, body weight and hemoglobin are the factors that affect the BWI in RSI Sultan Agung Semarang. The accuracy of PNN classification method on training data is 100%, which is better than the logistic regression method giving only about 88,2%, while the testing data has the same great accuracy at 86,67%.
Keywords: BWI, LBWI, PNN, Logistic Regression, Classification
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics