1Jurusan Teknik Elektro, Fakultas Teknik, Universitas Diponegoro Semarang, Indonesia
2Jl. Prof. Sudharto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia, Indonesia
BibTex Citation Data :
@article{Transient4751, author = {Misbah Fauzi and Nugroho D and Ajub Zahra}, title = {MENGUBAH TULISAN TANGAN MENJADI TEXT DIGITAL OCR (OPTICAL CHARACTER RECOGNITION) DENGAN MENGGUNAKAN METODE SEGMENTASI DAN KORELASI}, journal = {Transient: Jurnal Ilmiah Teknik Elektro}, volume = {2}, number = {4}, year = {2014}, keywords = {}, abstract = { A bstrak Sistem pengenalan huruf atau sering disebut OCR merupakan solusi yang efektif untuk proses konversi dari dokumen cetak ke dalam bentuk dokumen digital. Permasalahan yang muncul dalam melakukan proses pengenalan huruf komputer adalah bagaimana sebuah teknik pengenalan dapat mengenali berbagai jenis huruf dengan ukuran, ketebalan, dan bentuk yang berbeda. Pemotongan karakter menggunakan Segmentasi yaitu proses pengolahan citra yang bertujuan memisahkan wilayah (region) objek dengan wilayah latar belakang agar objek mudah dianalisis dalam rangka mengenali objek yang banyak melibatkan persepsi visual. Pengenalannya menggunakan metode korelasi dua dimensi yaitu standarisasi separasi angular dengan pengurangan nilai koordinat dengan nilai mean. Pembuatan software ini agar mampu menguji dan menganalisis kinerja sistem dengan memperhitungkan tingkat akurasi dan ketelitian, selain itu software ini dapat memudahkan untuk mengubah tulisan tangan menjadi teks digital. Proses awalnya yaitu dengan objek selembar kertas yang telah berisi sebuah tulisan tangan yang kemudian dilakukan proses scanner, prapengolahan, segmentasi dan dirubah menjadi teks digital dengan menggunakan software matlab R2009a. Dalam pelaksanaan atau pembuatan software telah diperoleh hasil tingkat keberhasilan sebesar 81,81% dan 18,19% atau sebanyak 27 huruf angka yang benar dan 6 hruruf angka yang salah dari 33 huruf angka. Untuk tingkat kegagalan yang dimana tingkat kegagalan dipengaruhi oleh beberapa faktor yang salah satunya adalah tebal atau tipisnya huruf. Kata Kunci : OCR dengan metode segmentasi dan korelasi Abstract Letter recognition system is often called OCR is an effective solution for the conversion of printed documents in the form of digital documents. The problems that arise in the process of computer literacy is how a recognition techniques to recognize different types of letters with the size, thickness, and different shapes. Cutting characters using Segmentation is the process of image processing which aims at separating region (region) region of the background objects with objects that easily analyzed in order to recognize objects that involve a lot of visual perception. The introduction of two-dimensional correlation method is the standardization of the angular separation by reduction with a mean value of the coordinates. Making this software to be able to test and analyze the performance of the system by taking into account the level of accuracy and precision, in addition, this software can make it easier to convert handwriting into digital text. The process is the first object that has a piece of paper containing a handwritten scanner then do the process, pretreatment, segmentation and converted into digital text using matlab R2009a software. In the implementation or software development has obtained the results of a success rate of 81.81% and 18.19%, or a total of 27 letters and 6 numbers correct hruruf the wrong number of digits 33 letters. For failure rate where the failure rate is influenced by several factors, one of which is thick or thin letters. Keywords : OCR segmentation metode and correlation }, issn = {2685-0206}, pages = {1013--1017} doi = {10.14710/transient.v2i4.1013-1017}, url = {https://ejournal3.undip.ac.id/index.php/transient/article/view/4751} }
Refworks Citation Data :
Abstrak
Sistem pengenalan huruf atau sering disebut OCR merupakan solusi yang efektif untuk proses konversi dari dokumen cetak ke dalam bentuk dokumen digital. Permasalahan yang muncul dalam melakukan proses pengenalan huruf komputer adalah bagaimana sebuah teknik pengenalan dapat mengenali berbagai jenis huruf dengan ukuran, ketebalan, dan bentuk yang berbeda. Pemotongan karakter menggunakan Segmentasi yaitu proses pengolahan citra yang bertujuan memisahkan wilayah (region) objek dengan wilayah latar belakang agar objek mudah dianalisis dalam rangka mengenali objek yang banyak melibatkan persepsi visual. Pengenalannya menggunakan metode korelasi dua dimensi yaitu standarisasi separasi angular dengan pengurangan nilai koordinat dengan nilai mean. Pembuatan software ini agar mampu menguji dan menganalisis kinerja sistem dengan memperhitungkan tingkat akurasi dan ketelitian, selain itu software ini dapat memudahkan untuk mengubah tulisan tangan menjadi teks digital. Proses awalnya yaitu dengan objek selembar kertas yang telah berisi sebuah tulisan tangan yang kemudian dilakukan proses scanner, prapengolahan, segmentasi dan dirubah menjadi teks digital dengan menggunakan software matlab R2009a. Dalam pelaksanaan atau pembuatan software telah diperoleh hasil tingkat keberhasilan sebesar 81,81% dan 18,19% atau sebanyak 27 huruf angka yang benar dan 6 hruruf angka yang salah dari 33 huruf angka. Untuk tingkat kegagalan yang dimana tingkat kegagalan dipengaruhi oleh beberapa faktor yang salah satunya adalah tebal atau tipisnya huruf.
Kata Kunci: OCR dengan metode segmentasi dan korelasi
Abstract
Letter recognition system is often called OCR is an effective solution for the conversion of printed documents in the form of digital documents. The problems that arise in the process of computer literacy is how a recognition techniques to recognize different types of letters with the size, thickness, and different shapes. Cutting characters using Segmentation is the process of image processing which aims at separating region (region) region of the background objects with objects that easily analyzed in order to recognize objects that involve a lot of visual perception. The introduction of two-dimensional correlation method is the standardization of the angular separation by reduction with a mean value of the coordinates. Making this software to be able to test and analyze the performance of the system by taking into account the level of accuracy and precision, in addition, this software can make it easier to convert handwriting into digital text. The process is the first object that has a piece of paper containing a handwritten scanner then do the process, pretreatment, segmentation and converted into digital text using matlab R2009a software. In the implementation or software development has obtained the results of a success rate of 81.81% and 18.19%, or a total of 27 letters and 6 numbers correct hruruf the wrong number of digits 33 letters. For failure rate where the failure rate is influenced by several factors, one of which is thick or thin letters.
Article Metrics:
Last update:
Penulis yang menyerahkan naskah perlu menyetujui bahwa hak cipta dari artikel tersebut akan diserahkan ke TRANSIENT: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro sebagai penerbit jurnal. Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
TRANSIENT: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro dan Editor berusaha keras untuk memastikan bahwa tidak ada data, pendapat, atau pernyataan yang salah atau menyesatkan dipublikasikan di jurnal. Dengan cara apa pun, isi artikel dan iklan yang diterbitkan dalam TRANSIENT: Jurnal Ilmiah Teknik Elektro adalah tanggung jawab tunggal dan eksklusif masing-masing penulis dan pengiklan.
Formulir Transfer Hak Cipta dapat diunduh di sini: [Formulir Transfer Hak Cipta Transient]. Formulir hak cipta harus ditandatangani dan dikirim ke Editor dalam bentuk surat asli, dokumen pindaian atau faks:
Dr. Wahyudi (Ketua Editor)Departemen Teknik Elektro, Universitas Diponegoro, IndonesiaJl. Prof. Sudharto, Tembalang, Semarang 50275 IndonesiaTelepon/Facs: 62-24-7460057Email: transient@elektro.undip.ac.id