Departemen Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{Transient25920, author = {Fauzan Akbar and Achmad Hidayatno and Aris Triwiyatno}, title = {PERANCANGAN PROGRAM PENGENALAN ISYARAT TANGAN DENGAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)}, journal = {Transient: Jurnal Ilmiah Teknik Elektro}, volume = {9}, number = {1}, year = {2020}, keywords = {Deep Learning, Convolutional Neural Network, AlexNet..}, abstract = { Convolutional Neural Network is one of the Deep Learning Algorithms. CNN itself is developed from Multilayer Peceptron (MLP) method. CNN and MLP are algorithms that focused on processing data in two dimensions form, such as pictures or sounds. CNN is made with the principle of translation invariance. That means CNN is able to recognize objects at various possible positions. There are 150 sign language images that are classified using Alexnet in this system. Alexnet is Krizhevsky's work at developing CNN method as a clessifier. CNN architecture developed by Alex has eight feature extraction layers. The layer consists of five convolution layers and three pooling layers. In its classification layer, Alexnet has two fully connected layers, each of them has 4096 neurons. At the end of the layer, there are classifications into 5 categories using softmax activation. The average accuracy of the classification results even reaches 100%. }, issn = {2685-0206}, pages = {26--36} doi = {10.14710/transient.v9i1.26-36}, url = {https://ejournal3.undip.ac.id/index.php/transient/article/view/25920} }
Refworks Citation Data :
Convolutional Neural Network is one of the Deep Learning Algorithms. CNN itself is developed from Multilayer Peceptron (MLP) method. CNN and MLP are algorithms that focused on processing data in two dimensions form, such as pictures or sounds. CNN is made with the principle of translation invariance. That means CNN is able to recognize objects at various possible positions. There are 150 sign language images that are classified using Alexnet in this system. Alexnet is Krizhevsky's work at developing CNN method as a clessifier. CNN architecture developed by Alex has eight feature extraction layers. The layer consists of five convolution layers and three pooling layers. In its classification layer, Alexnet has two fully connected layers, each of them has 4096 neurons. At the end of the layer, there are classifications into 5 categories using softmax activation. The average accuracy of the classification results even reaches 100%.
Article Metrics:
Last update:
Penulis yang menyerahkan naskah perlu menyetujui bahwa hak cipta dari artikel tersebut akan diserahkan ke TRANSIENT: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro sebagai penerbit jurnal. Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
TRANSIENT: Jurnal Ilmiah Teknik Elektro dan Departemen Teknik Elektro, Universitas Diponegoro dan Editor berusaha keras untuk memastikan bahwa tidak ada data, pendapat, atau pernyataan yang salah atau menyesatkan dipublikasikan di jurnal. Dengan cara apa pun, isi artikel dan iklan yang diterbitkan dalam TRANSIENT: Jurnal Ilmiah Teknik Elektro adalah tanggung jawab tunggal dan eksklusif masing-masing penulis dan pengiklan.
Formulir Transfer Hak Cipta dapat diunduh di sini: [Formulir Transfer Hak Cipta Transient]. Formulir hak cipta harus ditandatangani dan dikirim ke Editor dalam bentuk surat asli, dokumen pindaian atau faks:
Dr. Wahyudi (Ketua Editor)Departemen Teknik Elektro, Universitas Diponegoro, IndonesiaJl. Prof. Sudharto, Tembalang, Semarang 50275 IndonesiaTelepon/Facs: 62-24-7460057Email: transient@elektro.undip.ac.id