skip to main content

Pemodelan Fenomena Urban Heat Island di Kawasan Metropolitan Semarang Tahun 2000-2020

*Reinhart Christopher Junjungan  -  Department of Urban and Regional Planning, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Anang Wahyu Sejati  -  Department of Urban and Regional Planning, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Urban heat island merupakan fenomena perbedaan temperatur antara kawasan urban dan non urban. Fenomena tersebut berpotensi menimbulkan peningkatan kebutuhan energi listrik, intensitas smog, risiko keterpaparan penyakit cardiorespiratory, dan peluang gagal panen. Penelitian ini bertujuan untuk memodelkan fenomena urban heat island di Kawasan Metropolitan Semarang pada rentang 2000-2020. Model urban heat island diperoleh melalui hasil klasifikasi konversi band thermal citra Landsat 7 dan 8 menjadi temperatur permukaan lahan. Penelitian ini menemukan bahwa terjadi peningkatan proporsi luas rentang temperatur 25-30 oC dari 15% pada tahun 2000 menjadi 53,1% pada tahun 2020. Rentang tersebut juga menyebar dari pusat metropolitan ke kawasan periurban di sekitarnya. Pola sebaran yang mirip dengan urbanisasi seperti leap frog, ribbon, dan radial juga ditemukan dalam model urban heat island tahun 2020. Temuan ini diharapkan dapat menjadi masukan dalam kegiatan perencanaan penggunaan lahan dan tindakan mitigasi dampak negatif urban heat island.
Fulltext View|Download
Keywords: Urban heat island, Temperatur permukaan lahan, Spasio-Temporal, Kawasan Metropolitan Semarang

Article Metrics:

  1. Alsultan, S., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2005). An algorithm for land surface temperature analysis of remote sensing image coverage over AlQassim, Saudi Arabia. From Pharaohs to Geoinformatics FIG Working Week, 16–21
  2. Amorim, M. C. de C. T. (2020). Daily evolution of urban heat islands in a Brazilian tropical continental climate during dry and rainy periods. Urban Climate, 34, 100715
  3. Argüeso, D., Evans, J. P., Fita, L., & Bormann, K. J. (2014). Temperature response to future urbanization and climate change. Climate Dynamics, 42(7–8), 2183–2199
  4. Borbora, J., & Das, A. K. (2014). Summertime urban heat island study for Guwahati city, India. Sustainable Cities and Society, 11, 61–66
  5. Buchori, I., Sugiri, A., Maryono, M., Pramitasari, A., & Pamungkas, I. T. D. (2017). Theorizing spatial dynamics of metropolitan regions: A preliminary study in Java and Madura Islands, Indonesia. Sustainable Cities and Society, 35, 468–482
  6. Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146
  7. Effat, H. A., & Hassan, O. A. K. (2014). Change detection of urban heat islands and some related parameters using multi-temporal Landsat images; a case study for Cairo city, Egypt. Urban Climate, 10, 171–188
  8. Gago, E. J., Roldan, J., Pacheco-Torres, R., & Ordóñez, J. (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. Renewable and Sustainable Energy Reviews, 25, 749–758
  9. Giridharan, R., Ganesan, S., & Lau, S. S. Y. (2004). Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy and Buildings, 36(6), 525–534
  10. Guha, S., Govil, H., Taloor, A. K., Gill, N., & Dey, A. (2021). Land surface temperature and spectral indices: A seasonal study of Raipur City. Geodesy and Geodynamics
  11. Hirano, Y., & Fujita, T. (2012). Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo. Energy, 37(1), 371–383
  12. Jiang, G., Ma, W., Qu, Y., Zhang, R., & Zhou, D. (2016). How does sprawl differ across urban built-up land types in China? A spatial-temporal analysis of the Beijing metropolitan area using granted land parcel data. Cities, 58, 1–9
  13. Kabano, P., Lindley, S., & Harris, A. (2021). Evidence of urban heat island impacts on the vegetation growing season length in a tropical city. Landscape and Urban Planning, 206, 103989
  14. Kawashima, S., Ishida, T., Minomura, M., & Miwa, T. (2000). Relations between surface temperature and air temperature on a local scale during winter nights. Journal of Applied Meteorology and Climatology, 39(9), 1570–1579
  15. Li, H., Sodoudi, S., Liu, J., & Tao, W. (2020). Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmospheric Research, 241, 104957
  16. Ningrum, W., & Narulita, I. (2018). Deteksi Perubahan Suhu Permukaan Menggunakan Data Satelit Landsat Multi-Waktu Studi Kasus Cekungan Bandung. Jurnal Teknologi Lingkungan, 19(2), 145–154
  17. Porangaba, G. F. O., Teixeira, D. C. F., Amorim, M. C. de C. T., Da Silva, M. H. S., & Dubreuil, V. (2021). Modeling the urban heat island at a winter event in Três Lagoas, Brazil. Urban Climate, 37, 100853
  18. Prilandita, N. (2009). Perceptions and Responses to Warming in an Urban Environment: A Case Study of Bandung City, Indonesia. J Ournal Infrastructure and Built Environment, 1, 51–58
  19. Sejati, A., Buchori, I., & Rudiarto, I. (2018). The impact of urbanization to forest degradation in Metropolitan Semarang: A preliminary study. IOP Conference Series: Earth and Environmental Science, 123(1), 12011
  20. Sejati, A., Buchori, I., & Rudiarto, I. (2019). The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustainable Cities and Society, 46, 101432
  21. Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440
  22. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384

Last update:

No citation recorded.

Last update:

No citation recorded.