skip to main content

Design of a Low-Cost Vessel Monitoring System for Fishing Vessels

*Gladys Amelia  -  Department of Naval Architecture, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Kecamatan Sukolilo, Kota Surabaya, Jawa Timur, Indonesia 60111, Indonesia
Totok Yulianto  -  Department of Naval Architecture, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Kecamatan Sukolilo, Kota Surabaya, Jawa Timur, Indonesia 60111, Indonesia
Adi Novitarini Putri  -  Department of Naval Architecture, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Kecamatan Sukolilo, Kota Surabaya, Jawa Timur, Indonesia 60111, Indonesia

Citation Format:
Abstract
Indonesia, as the world's second-largest maritime country, has a fisheries sector that plays a crucial role in the economy with a contribution of nearly 5% to GDP. With 170,034 fishing vessels spread across Indonesia's entire territory, monitoring the movement of fishing vessels is essential to prevent illegal activities such as fish smuggling, territorial incursions, and maritime terrorism threats. This study aims to design an affordable, effective, and easy-to-use fish vessel monitoring system. The system includes monitoring of location, fuel, weather, and early warning features that can enhance surveillance efficiency. LoRa technology is used as a communication network module for long-distance data transmission at low cost, while the ESP32 microcontroller manages the system effectively. Initial testing in a laboratory scale model, adjusted to field scenarios, showed satisfactory results: GPS accuracy reached 99.49%, fuel sensor 93.67%, and weather data above 97%, except for wind speed at 72.86% due to external factors during measurement and BMKG data update frequency. Field testing conducted on fishing vessels at the Brondong Nusantara Fishery Port, Lamongan, showed GPS accuracy above 98%, fuel sensor around 92%, and BMKG weather data above 94%. From an economic perspective, this system offers lower production and subscription costs compared to current commercial VMS.
Fulltext View|Download
Keywords: Ship Monitoring System, Fishing Vessel, LoRa, ESP32, Low-Cost Technology
  1. FAO.(2021). Bergabung membentuk sektor perikanan masa depan. Accessed on May 25th 2024. https://openknowledge.fao.org/server/api/core /bitstreams/8272900c-43c8-42d8-8ab8d28cb53abfeb/content
  2. Kementerian Kelautan dan Perikanan Republik Indonesia. (2025.). Jumlah Kapal Perikanan Tangkap Laut (2019–2023). Portal Data KKP. Accessed on July 8th 2025, dari https://portaldata.kkp.go.id/portals/datastatistik/jumlah_kapal/tbl-statis/d/54
  3. Tassetti, A. N., Galdelli, A., Pulcinella, J., Mancini, A., & Bolognini, L. (2022). Addressing Gaps in Small-Scale Fisheries: A Low-Cost Tracking System. Sensors, 22(3), 839. https://doi.org/10.3390/s22030839
  4. Kemong, B. (2015). Sistem mata Pencaharian Hidup Nelayan Tradisional Suku Bangsa Kamoro di Desa Tipuka Kecamatan Mapurujaya, Kabupaten Mimika, Provinsi Papua. HOLISTIK, Journal of Social and Culture
  5. Sutini, S., and Hermawati, R. (2022). Penataan Sistem Pelabuhan Rakyat Bagi Nelayan di Pelabuhan Tambak Lorok Semarang. Jurnal Sains dan Teknologi Maritim, 21(2), 141-150. KKP
  6. Kementerian Kelautan dan Perikanan. (2023). Peraturan Menteri Kelautan dan Perikanan Nomor 36 Tahun 2023 tentang Penempatan Alat Penangkapan Ikan dan Alat Bantu Penangkapan Ikan di Zona Penangkapan Ikan Terukur dan Wilayah Pengelolaan Perikanan Negara Republik Indonesia di Perairan Darat. Kementerian Kelautan dan Perikanan
  7. Ardiyani, W., Iskandar, B., and Wisudo, S. (2019). Estimasi Jumlah Kapal Penangkap Ikan Optimal di WPP 712 Berdasarkan Potensi Sumber Daya Ikan. Albacore, Volume 3, No 1, Februari 2019, Hal 095-104 : Bogor
  8. Suroto, H. (2020). Kenali Navigasi Laut Nelayan Tradisional di Pesisir Utara Papua. Accessed on March 7th 2025. https://www.nabire.net/kenali-navigasi-lautnelayan-tradisional-di-pesisir-utara-papua/
  9. Muhdhor, A. (2020). Efektivitas Penggunaan Aplikasi GPS (Global Positioning System). Jakarta : Universitas Islam Negeri Syarif Hidayatullah
  10. Nugroho, A. E. (2014). Pengenalan Alat Ukur GPS. Accessed on March 7th 2025. https://geodesiinfo.wordpress.com/2014/03/22/pengenalan-alat-ukur-gps/
  11. Firdaus, I. (2023). Perancangan Aplikasi Tracking System Zona Penangkapan Rajungan Berbasis Vessel Monitoring System untuk Kapal Ikan Tradisional. Surabaya : Institut Teknologi Sepuluh Nopember
  12. Dziuba, A. (2024). Mapbox vs Google Maps vs OpenStreetMap APIs : Finding the Perfect Fit for Your Next App. Accessed on March 15th 2025. https://relevant.software/blog/choosinga-map-amapbox-google-maps-openstreetmap/
  13. Raza, U., Kulkarni, P., & Sooriyabandara, M. (2017). Low Power Wide Area Networks: An Overview. IEEE Commun. Surveys Tuts, 19(s2), 855-873
  14. Wagyana, A., and Rahmat. (2019). Prototipe Modul Praktik untuk Pengembangan Aplikasi. Internet of Things (IoT). Jurnal Ilmiah Setrum, 8(1), 238-247
  15. Hidayah, R., Nurcahyo, S., and Dewatama, D. (2024). Implementasi Pengaturan Suhu Menggunakan Mikrokontroler ESP32. Journal of Mechanical and Electrical Technology, 3(3), 106-115
  16. Amrullah, Agit. (2022). Perbandingan Tingkat Akurasi Pengukuran Ketinggian Air pada Sensor HC-SR04, HY-SRF05, dan JSNSR04T. Jurnal Infomedia Vol. 7 No.1 : Universitas Amikom Yogyakarta
  17. Prastyo, E. (2024). Pengertian dan Cara Kerja Sensor Ultrasonik HC-SR 04. Accessed on June 16th 2025. https://www.arduinoindonesia.id/2022/10/pengertian-dan-cara-kerja-sensor-ultrasonik-HCSR04.html

Last update:

No citation recorded.

Last update:

No citation recorded.