skip to main content

ANALISIS KEANDALAN INTEGRATED ELECTRIC HYDRAULIC PUMP PADA MEDIUM EV BUS MENGGUNAKAN METODE RELIABILITY BLOCK DIAGRAM DAN FAULT TREE ANALYSIS

*Dhafin Baihaqi Alfan  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Ismoyo Haryanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Gunawan Dwi Haryadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Sistem Air Conditioner (AC) merupakan subsistem penting pada Medium Electric Vehicle Bus karena berpengaruh langsung terhadap kenyamanan penumpang dan konsumsi energi kendaraan. Kegagalan pada sistem AC dapat menurunkan keandalan operasional bus listrik secara keseluruhan. Penelitian ini bertujuan untuk menganalisis keandalan sistem AC pada Medium Electric Vehicle Bus menggunakan metode Reliability Block Diagram (RBD), Fault Tree Analysis (FTA), dan Risk Based Inspection (RBI). Analisis RBD dan FTA digunakan untuk menentukan probabilitas kegagalan masing-masing komponen, sedangkan RBI diterapkan untuk menetapkan prioritas inspeksi berdasarkan tingkat risiko. Hasil analisis menunjukkan bahwa kompresor memiliki probabilitas kegagalan tertinggi sebesar 40,5% dan dikategorikan sebagai risiko tinggi, diikuti oleh blower dan sistem kontrol elektronik dengan probabilitas kegagalan masing-masing sebesar 25,1%. Kondensor memiliki probabilitas kegagalan sebesar 15,9% dan termasuk risiko menengah, sedangkan pipa refrigeran dan katup ekspansi masing- masing memiliki probabilitas kegagalan sebesar 10,9% dan dikategorikan sebagai risiko rendah.

Penerapan RBI berdasarkan hasil tersebut memungkinkan penentuan strategi inspeksi yang lebih terarah, sehingga dapat meningkatkan keandalan sistem AC dan efektivitas pemeliharaan.
Fulltext View|Download
Keywords: dhafinbaihaqialfan@gmail.com
  1. Niewczas, A., Rymarz, J., Ślęzak, M., and Kasperek, D., 2025, “Reliability study of electric buses in the urban public transport system,” Energies, vol. 18, no. 14, Art. 3863, doi: 10.3390/en18143863
  2. Widmer, F., van Dooren, S., and Onder, C., 2021, “Optimization of the energy-comfort trade-off of HVAC systems in electric city buses,” Energies, vol. 14, no. 5, doi: 10.3390/en14051437
  3. Kale, S. K., Patil, S. S., and Deshmukh, S. P., 2024, “Reliability analysis of HVAC systems in passenger vehicles,” Applied Sciences, vol. 14, no. 22, Art. 10522, doi: 10.3390/app142210522
  4. Khaligh, A., and Li, Z., 2010, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 59, no. 6, pp. 2806–2814, doi: 10.1109/TVT.2010.2047877
  5. Henley, E. J., and Kumamoto, H., 1996, Probabilistic Risk Assessment and Management for Engineers and Scientists, IEEE Press, New York
  6. Rausand, M., and Høyland, A., 2004, System Reliability Theory: Models, Statistical Methods, and Applications, Wiley, New York
  7. Khan, F. I., and Haddara, M. M., 2003, “Risk-based maintenance: A quantitative approach for maintenance and inspection scheduling,” Journal of Loss Prevention in the Process Industries, vol. 16, no. 6, pp. 561–573, doi: 10.1016/S0950-4230(03)00063-0
  8. Villemeur, A., 1992, Reliability, Availability, Maintainability and Safety Assessment, Vol. 1, Wiley, Chichester
  9. IEC 61025, 2006, Fault Tree Analysis (FTA), International Electrotechnical Commission, Geneva
  10. IEC 60812, 2018, Failure Modes and Effects Analysis (FMEA and FMECA), International Electrotechnical Commission, Geneva
  11. Callou, Gustavo, et al. "An integrated modeling approach to evaluate and optimize data center sustainability, dependability and cost." Energies 7.1 (2014): 238-277

Last update:

No citation recorded.

Last update:

No citation recorded.