skip to main content

SIMULASI NUMERIK CFD-DEM PADA AGITATED PACKED BED DRYER PADA MATERIAL BERDENSITAS TINGGI

*Reka Adiyasa Cahyapala  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Eflita Yohana  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Pengeringan merupakan tahapan penting dalam pemanfaatan biomassa kayu karena kadar air yang tinggi dapat menurunkan efisiensi konversi energi. Studi ini bertujuan untuk mengevaluasi pengaruh variasi temperatur inlet terhadap proses pengeringan biomassa kayu dalam sistem agitated packed bed dryer menggunakan pendekatan Computational Fluid Dynamics–Discrete Element Method (CFD–DEM). Simulasi dilakukan dengan variasi temperatur inlet udara panas sebesar 333 K, 343 K, dan 353 K untuk menganalisis dinamika perpindahan panas dan massa pada skala partikel. Hasil simulasi menunjukkan bahwa peningkatan temperatur inlet mempercepat penurunan moisture content partikel biomassa akibat meningkatnya driving force termal antara fase fluida dan fase padatan. Laju evaporasi tertinggi terjadi pada tahap awal pengeringan dan menurun seiring berkurangnya kandungan air partikel. Agitasi terbukti meningkatkan homogenitas distribusi temperatur dan kelembapan di dalam unggun, meskipun fluktuasi lokal tetap teramati akibat perubahan porositas dan dinamika kontak antar-partikel. Selain itu, koefisien perpindahan panas, bilangan Nusselt, dan bilangan Sherwood menunjukkan peningkatan seiring kenaikan temperatur inlet, namun cenderung mengalami keterbatasan pada kondisi temperatur tertinggi. Studi ini menunjukkan bahwa pendekatan CFD–DEM efektif untuk memahami mekanisme pengeringan biomassa kayu dan dapat digunakan sebagai dasar optimasi kondisi operasi pengeringan.

Fulltext View|Download
Keywords: agitated pecked bed dryer; biomassa kayu; cfd-dem; pengeringan
  1. Akbari Fakhrabadi, E., Stickel, J. J., & Liberatore, M. W. (2022). Frictional contacts between individual woody biomass particles under wet and dry conditions. Powder Technology, 408. https://doi.org/10.1016/j.powtec.2022.117719
  2. Bi, D., Kong, R., Liu, S., He, J., Sun, H., & Yao, D. (2023). CFD-DEM investigation of the flow characteristic of biomass particles and heat carrier in a novel V-shaped down-tube pyrolysis reactor. International Communications in Heat and Mass Transfer, 149. https://doi.org/10.1016/j.icheatmasstransfer.2023.107132
  3. Chen, D., Zheng, Y., & Zhu, X. (2012). Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresource Technology, 107, 451–455. https://doi.org/10.1016/j.biortech.2011.12.032
  4. Cui, P., Yu, Y., Xue, Q., Wu, Z., Miao, K., Liu, C., Zhao, L., & Li, Z. (2023). Numerical simulation and optimization of Lonicerae Japonicae Flos extract spray drying process based on temperature field verification and deep reinforcement learning. Journal of Food Engineering, 345. https://doi.org/10.1016/j.jfoodeng.2023.111425
  5. Fang, X., Qi, B., Liu, J., Markthaler, S., Elhaus, N., & Karl, J. (2025). Particle-resolved computational fluid dynamics simulation of the heat transfer in fixed-bed reactors for heterogeneous catalysis: A review. In International Journal of Heat and Mass Transfer (Vol. 250). Elsevier Ltd. https://doi.org/10.1016/j.ijheatmasstransfer.2025.127311
  6. Golshan, S., Sotudeh-Gharebagh, R., Zarghami, R., Mostoufi, N., Blais, B., & Kuipers, J. A. M. (2020). Review and implementation of CFD-DEM applied to chemical process systems. In Chemical Engineering Science (Vol. 221). Elsevier Ltd. https://doi.org/10.1016/j.ces.2020.115646
  7. Handayani, S. U., Wahyudi, H., Agustina, S., Yulianto, M. E., & Aryanto, H. D. (2023). CFD-DEM Study of heat and mass transfer of ellipsoidal particles in fluidized bed dryers. In Powder Technology (Vol. 425). https://doi.org/10.1016/j.powtec.2023.118535
  8. Izquierdo-Barrientos, M. A., Sobrino, C., & Almendros-Ibáñez, J. A. (2016). Modeling the Heat Transfer Coefficient between a Surface and Fixed and Fluidized Beds with Phase Change Material. Journal of Heat Transfer, 138(7). https://doi.org/10.1115/1.4032981
  9. Jervell, V. G., Gjennestad, M. A., Trinh, T. T., & Wilhelmsen, Ø. (2024). The influence of thermal diffusion on water migration through a porous insulation material. International Journal of Heat and Mass Transfer, 227. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125576
  10. Khodabandehlou, R., Norouzi, H. R., Larimi, A., & Mostoufi, N. (2025). Analysis of biomass gasification in a fluidized bed using CFD-DEM. Energy, 320. https://doi.org/10.1016/j.energy.2025.135395
  11. Ren, J., & Kloker, M. (2022). Non-ideal gas behavior matters in hydrodynamic instability. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-26629-6
  12. Sosnowski, M., Krzywanski, J., Grabowska, K., Zylka, A., Kulakowska, A., Skrobek, D., & Szudarek, M. (2025). Two-way coupled CFD-DEM model of a Disc-Shaped fluidized sorption reactor operating at low-pressure regimes. Applied Thermal Engineering, 266. https://doi.org/10.1016/j.applthermaleng.2025.125600
  13. Szufa, S., Unyay, H., Pakowski, Z., Piersa, P., Siczek, K., Kabaciński, M., Sobek, S., Moj, K., Likozar, B., Kostyniuk, A., & Junga, R. (2025). Batch rolling-bed dryer applicability for drying biomass prior to torrefaction. Renewable Energy, 239. https://doi.org/10.1016/j.renene.2024.122106
  14. Tamrakar, A., & Ramachandran, R. (2019). CFD–DEM–PBM coupled model development and validation of a 3D top-spray fluidized bed wet granulation process. Computers and Chemical Engineering, 125, 249–270. https://doi.org/10.1016/j.compchemeng.2019.01.023
  15. Zhang, Y., & Li, L. (2024). Optimization of Discrete Element Method Model to Obtain Stable and Reliable Numerical Results of Mechanical Response of Granular Materials. Minerals, 14(8). https://doi.org/10.3390/min14080758

Last update:

No citation recorded.

Last update:

No citation recorded.