skip to main content

STUDI NUMERIK PENGARUH U-GROOVE TERHADAP KONTUR TURBULENCE KINETIC ENERGY DAN PENINGKATAN TORSI TURBIN GORLOV PADA ARUS LAUT

*Marsellinus Jonathan Siagian  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Syaiful Syaiful  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Shofwan Bahar  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Indonesia sebagai negara kepulauan memiliki potensi energi arus laut yang sangat besar untuk dikembangkan menjadi sumber energi listrik ramah lingkungan. Pembangkit Listrik Tenaga Arus Laut (PLTAL) merupakan teknologi yang digunakan untuk mengkonversi energi kinetik arus laut menjadi energi listrik, dengan turbin sebagai komponen utamanya. Turbin Gorlov merupakan salah satu jenis turbin sumbu vertikal (VAWT) yang banyak diterapkan dalam sistem konversi energi hidrokinetik sebagai pengembangan dari turbin Darrieus konvensional. Turbin dengan bilah berbentuk heliks ini memiliki keunggulan berupa kemampuan self-starting serta stabilitas rotasi yang baik, namun kurang efektif digunakan pada kecepatan aliran rendah. Studi ini bertujuan mengoptimalkan performa turbin Gorlov pada kondisi arus laut kecepatan rendah melalui modifikasi bilah dengan penambahan U-groove. Modifikasi bilah kemudian dibandingkan dengan turbin Gorlov tanpa groove dan dievaluasi melalui simulasi CFD dengan k-ω SST sebagai model turbulensi yang digunakan pada solver ANSYS Fluent 2022. Hasil simulasi menunjukkan adanya fenomena dynamic stall pada aliran di sekitar turbin Gorlov saat beroperasi pada TSR rendah. Fenomena ini kemudian mereda secara bertahap seiring meningkatnya kecepatan rotasi turbin. Penambahan U-groove pada permukaan bilah menurunkan intensitas Energi Kinetik Turbulen (TKE) pada aliran, sehingga berdampak terhadap peningkatan performa turbin. Peningkatan performa ditandai dengan torsi maksimum turbin dengan U-groove yang unggul sebesar 4,18% dibandingkan turbin tanpa groove.

Fulltext View|Download
Keywords: energi kinetik turbulen; kontrol aliran pasif; simulasi cfd; turbin heliks gorlov; u-groove
  1. International Energy Agency, “Global Energy Review 2025.” Diakses: 19 Des. 2025. [Daring]. Tersedia di: https://www.iea.org/reports/global-energy-review-2025
  2. E. Graham, F. Nicolas, K. Altieri, “Global Electricity Review 2025,” Apr. 2025
  3. M. A. J. R. Quirapas, A. Taeihagh, “Ocean renewable energy development in Southeast Asia: Opportunities, risks and unintended consequences,” Renewable and Sustainable Energy Reviews, vol. 137, p. 110403, Mar. 2021, doi: 10.1016/J.RSER.2020.110403
  4. M. A. J. R. Quirapas, H. Lin, M. L. S. Abundo, S. Brahim, D. Santos, “Ocean renewable energy in Southeast Asia: A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 799–817, Jan. 2015, doi: 10.1016/J.RSER.2014.08.016
  5. Dewan Energi Nasional, “Outlook Energi Indonesia 2023,” Jakarta, 2023
  6. A. Firdaus, G. Houlsby, T. Adcock, “Tidal Energy Resource in Larantuka Straits, Indonesia,” Proceedings of the Institution of Civil Engineers - Energy, vol. 173, pp. 1–38, Jan. 2019, doi: 10.1680/jener.19.00042
  7. K. Orhan & R. Mayerle, “Potential hydrodynamic impacts and performances of commercial-scale turbine arrays in the strait of Larantuka, Indonesia,” J Mar Sci Eng, vol. 8, no. 3, Mar. 2020, doi: 10.3390/jmse8030223
  8. S. Mohammadi, M. Hassanalian, H. Arionfard, S. Bakhtiyarov, “Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait,” Renew Energy, vol. 150, pp. 147–155, Mei 2020, doi: 10.1016/J.RENENE.2019.12.142
  9. K. Liu, M. Yu, W. Zhu, “Performance analysis of vertical axis water turbines under single-phase water and two-phase open channel flow conditions,” Ocean Engineering, vol. 238, p. 109769, Okt. 2021, doi: 10.1016/J.OCEANENG.2021.109769
  10. H. Seifi Davari, M. Seify Davari, E. L. Ntantis, “A review on the design and optimization of lift-based hydrokinetic turbines: Darrieus, Gorlov, and helical types,” Results in Engineering, vol. 28, p. 107746, Des. 2025, doi: 10.1016/J.RINENG.2025.107746
  11. W. H. Chen, J. S. Wang, M. H. Chang, J. K. Mutuku, A. T. Hoang, “Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi approach with modified additive method,” Energy Convers Manag, vol. 245, p. 114609, Okt. 2021, doi: 10.1016/J.ENCONMAN.2021.114609
  12. M. M. Aslam Bhutta, N. Hayat, A. U. Farooq, Z. Ali, S. R. Jamil, and Z. Hussain, “Vertical axis wind turbine – A review of various configurations and design techniques,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 1926–1939, Mei 2012, doi: 10.1016/J.RSER.2011.12.004
  13. A. Zhang, S. Liu, Y. Ma, C. Hu, Z. Li, “Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines,” Energy, vol. 247, p. 123376, Mei 2022, doi: 10.1016/J.ENERGY.2022.123376
  14. A. Chalaca, L. Velásquez, A. Rubio-Clemente, E. Chica, “Design and Optimization of a Gorlov-Type Hydrokinetic Turbine Array for Energy Generation Using Response Surface Methodology,” Energies (Basel), vol. 17, no. 19, 2024, doi: 10.3390/en17194870
  15. J. C. Pineda, A. Rubio-Clemente, E. Chica, “Optimization of a Gorlov Helical Turbine for Hydrokinetic Application Using the Response Surface Methodology and Experimental Tests,” Energies (Basel), vol. 17, no. 22, 2024, doi: 10.3390/en17225747
  16. T. Desai, S. Paul, U. Kalburgi, S. Mandal, “Review of Active and Passive Devices for Drag Reduction,” Acceleron Aerospace Journal, vol. 4, pp. 1056–1081, Apr. 2025, doi: 10.61359/11.2106-2521
  17. T. A. Orvi, I. Hossain, M. Hassan, “Computational and experimental investigation of lower-surface dimple effects on NACA 0015 airfoil aerodynamics,” Engineering Science and Technology, an International Journal, vol. 72, p. 102228, Des. 2025, doi: 10.1016/J.JESTCH.2025.102228
  18. Jooha Kim & Haecheon Choi, “Aerodynamics of a golf ball with grooves,” Proc Inst Mech Eng P J Sport Eng Technol, vol. 228, no. 4, pp. 233–241, Jul. 2014, doi: 10.1177/1754337114543860
  19. T. Ibatan, M. S. Uddin, M. A. K. Chowdhury, “Recent development on surface texturing in enhancing tribological performance of bearing sliders,” Surf Coat Technol, vol. 272, pp. 102–120, Jun. 2015, doi: 10.1016/J.SURFCOAT.2015.04.017
  20. Y. Liu & Y. Yin, “Numerical investigation of unsteady aerodynamics on a grooved NACA 4415 airfoil,” Renew Energy, vol. 237, p. 121567, Des. 2024, doi: 10.1016/J.RENENE.2024.121567
  21. Y. Liu, P. Li, W. He, K. Jiang, “Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 206, p. 104263, Nov. 2020, doi: 10.1016/J.JWEIA.2020.104263
  22. G. Li, G. Wu, L. Tan, H. Fan, Q. Kong, “Optimal design of low-speed current energy turbine based on turbine blades with different pitch angles,” Ocean Engineering, vol. 314, p. 119488, Des. 2024, doi: 10.1016/J.OCEANENG.2024.119488
  23. Y. Liu, P. Li, W. He, K. Jiang, “Numerical study of the effect of surface grooves on the aerodynamic performance of a NACA 4415 airfoil for small wind turbines,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 206, p. 104263, Nov. 2020, doi: 10.1016/J.JWEIA.2020.104263
  24. P. Marsh, D. Ranmuthugala, I. Penesis, G. Thomas, “Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines,” Renew Energy, vol. 81, pp. 926–935, Sep. 2015, doi: 10.1016/J.RENENE.2015.03.083
  25. J.-N. Wang, F. Wang, L.-L. Zhang, “Construction and operation of a deep-sea scientific observation network in the western pacific; [西太平洋深海科学观测网的建设和运行],” Oceanologia et Limnologia Sinica, vol. 48, no. 6, pp. 1471 – 1479, 2017, doi: 10.11693/hyhz20170900228
  26. Y. Zhang, C. Kang, C. Pan, W. Opare, “Numerical investigation of performance and flow patterns of a modified Savonius hydraulic rotor,” IOP Conf Ser Earth Environ Sci, vol. 240, no. 4, p. 42009, Mar. 2019, doi: 10.1088/1755-1315/240/4/042009
  27. S. Pongduang, C. Kayankannavee, Y. Tiaple, “Experimental Investigation of Helical Tidal Turbine Characteristics with Different Twists,” Energy Procedia, vol. 79, pp. 409–414, Nov. 2015, doi: 10.1016/J.EGYPRO.2015.11.511
  28. C. S. Bang, Z. A. Rana, S. A. Prince, “CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT),” Machines, vol. 12, no. 11, 2024, doi: 10.3390/machines12110800
  29. C. Simão Ferreira, G. van Kuik, G. van Bussel, F. Scarano, “Visualization by PIV of dynamic stall on a vertical axis wind turbine,” Exp Fluids, vol. 46, no. 1, pp. 97–108, 2009, doi: 10.1007/s00348-008-0543-z
  30. P. Sooraj & A. Agrawal, “Passive flow control mechanism in a bio-inspired corrugated hydrofoil,” SN Appl Sci, vol. 1, no. 11, p. 1505, 2019, doi: 10.1007/s42452-019-1562-5
  31. D. Satrio & I. K. A. P. Utama, “Experimental investigation into the improvement of self-starting capability of vertical-axis tidal current turbine,” Energy Reports, vol. 7, pp. 4587–4594, Nov. 2021, doi: 10.1016/J.EGYR.2021.07.027

Last update:

No citation recorded.

Last update:

No citation recorded.