skip to main content

IMPLEMENTASI IMAGE PROCESSING BERBASIS PYTHON UNTUK OTOMATISASI ANALISIS METALOGRAFI KUANTITATIF

*Muhammad Reza Phahlevi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Toni Prahasto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Eflita Yohana  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Analisis metalografi kuantitatif menyediakan hubungan fundamental antara struktur mikro material seperti dislokasi, fasa, dan ukuran grain dengan sifat mekaniknya. Namun, metode evaluasi konvensional sering kali mengandalkan teknik manual atau komparatif sehingga memakan waktu dan menimbulkan subjektivitas karena bergantung pada keahlian operator. Mengatasi hal tersebut, penelitian ini bertujuan mengembangkan dan memvalidasi metode otomatis menggunakan bahasa pemrograman Python, didukung oleh library seperti OpenCV dan Scikit-Image, dalam melakukan ekstraksi kuantitatif fitur total area dan fraksi area dari gambar mikrostruktur dislokasi, fasa, serta grain. Metode ini diimplementasikan mengikuti alur kerja image processing secara sistematis, dimulai dengan kalibrasi, konversi skala abu-abu (grayscale), dan median filtering sebagai peredam noise. Segmentasi objek, sebuah langkah penting dalam mengisolasi fitur, diterapkan menggunakan metode thresholding Otsu. Proses validasi dilakukan dengan menguji hasil metode Python terhadap ImageJ, software yang telah menjadi standar acuan oleh komunitas ilmiah. Perbandingan tersebut dikuantifikasi menggunakan metrik mean absolute percentage error (MAPE) untuk mengukur deviasi. Hasil validasi menunjukkan akurasi yang tinggi, dengan nilai MAPE secara konsisten berkisar antara 0% hingga 0,828%. Analisis pada gambar dislokasi dan grain bahkan menunjukkan data identik dengan ImageJ. Studi ini membuktikan bahwa Python dapat berfungsi sebagai alternatif yang valid, andal, dan efisien. Keunggulan utamanya mencakup potensi otomatisasi, peningkatan objektivitas analisis, dan kapabilitas dalam memproses dataset berskala besar.

Fulltext View|Download
Keywords: image processing; metalografi kuantitatif; otomatisasi; python; segmentasi
  1. Berus, L., Skakun, P., Rajnovic, D., Janjatovic, P., Sidjanin, L., Ficko, M., 2020, “Determination of The Grain Size in Single-phase Materials by Edge Detection and Concatenation,” Metals, 10: 1-13
  2. Malage, A., Rege, P.P., Rathod, M.J., 2015, “Automatic Quantitative Analysis of Microstructure of Ductile Cast Iron Using Digital Image Processing,” Metallurgical and Materials Engineering, 21: 155-166
  3. Huang, Y.D., Froyen, L., 2001, “Quantitative Analysis of Microstructure in Metals with Computer Assistance,” NDT Net, 6
  4. Hatch, J.E., 1984, “Microstructure of Alloys, in J.E. Hatch (Ed.): Aluminum Properties and Physical Metallurgy,” ASM Internasional, p.58–104
  5. Zhongli, D., Kaiyuan, W., Yanlin, L., 2013, “Research on Quantitative Metallographic Analysis for Metallic Materials of Power Grid,” Applied Mechanics and Materials, 422: 29-34
  6. Jung, J.H., Lee, S.J., Kim, H.S., 2022, “Estimation of Average Grain Size from Microstructure Image Using a Convolutional Neural Network,” Materials, 15: 6954
  7. Lagerlof, P., 2018, “Crystal Dislocations: Their Impact on Physical Properties of Crystals,” Crystals, 8: 10-12
  8. Paul, A., Gangopadhyay, A., Chinta, A.R., Mukherjee, D.P., Das, P., Kundu, S., 2018, “Calculation of Phase Fraction in Steel Microstructure Images using Random Forest Classifier,” IET Image Processing, 12: 1370-1377
  9. Zhu, T.T., Bushby, A.J., Dunstan, D.J., 2008, “Materials Mechanical Size Effects: A Review,” Materials Technology, 23: 193-209
  10. Callister, W.D., Rethwisch, D.G., 2018, “Materials Science and Engineering: An Introduction,” Wiley, New Jersey
  11. Zhang, X., Alduma, A.I.A, Zhan, F., Zhang, W., Ren, J., Lu, X., 2025, “Effect of Grain Size on Mechanical Properties and Deformation Mechanism of Nano-Polycrystalline Pure Ti Simulated by Molecular Dynamics,” Metals, 15: 271
  12. Odanović, Z., Djurdjević, M., Byczynski, G., Katavić, B., Grabulov, V., 2009, “Image Analysis Application in Metallurgical Engineering and Quality Control,” WIT Transactions on Engineering Sciences, 64: 259-270
  13. Kalomiros, J.A., Lygouras, J., 2008, “Design and Evaluation of A Hardware/Software FPGA-based System for Fast Image Processing,” Microprocessors and Microsystems, 32: 95-106
  14. Shih, F.Y., 2017, “Image Processing and Mathematical Morphology: Fundamentals and Applications,” CRC Press, Boca Raton
  15. Gonzalez, R.C., Woods, R.E., 2018, “Digital Image Processing,” Pearson Education, Harlow
  16. Bulgarevich, D.S., Tsukamoto, S., Kasuya, T., Demura, M., Watanabe, M, 2018, “Pattern Recognition with Machine Learning on Optical Microscopy Images of Typical Metallurgical Microstructures,” Scientific Reports, 8: 2078
  17. Burger, W., Burge, M.J., 2016, “Digital Image Processing: An Algorithmic Introduction Using Java,” Springer, London
  18. Lutz, M., 2013, “Learning Python: Powerful Object-Oriented Programming,” O'Reilly Media, Sebastopol
  19. Zelle, J., 2016, “Python Programming: An Introduction to Computer Science,” Franklin, Beedle & Associates, Portland
  20. Rosebrock, A., 2016, “Practical Python and OpenCV: An Introductory, Example Driven Guide to Image Processing and Computer Vision,” PyImageSearch.com
  21. Walt, S.V.D., Schonberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T., 2014, “Scikit-image: Image processing in python,” PeerJ, 1: 1-18
  22. Broeke, J., Perez, J.M.M., Pascau, J., 2015, “Image Processing with ImageJ,” Packt Publishing, Birmingham
  23. Bucher, F., Dastagir, N., Tamulevicius, M., Obed, D., Dieck, T., Vogt, P.M., Dastagir, K., 2025, “High-precision Computer-assisted Surface Area Estimation in Large Surface Burn Patients using ImageJ – A Comparative Analysis,” Burns, 51: 107524
  24. Lau, M., Morgenstern, F., Hubscher, R., Knospe, A., Herrmann, M., Doring, M., Lippmann, W., 2020, “Image Segmentation Variants for Semi-automated Quantitative Microstructural Analysis with ImageJ,” Praktische Metallographie/Practical Metallography, 57: 752-775
  25. Breitenbach, S.F.M., Marwan, N., 2023, “Acquisition and Analysis of Greyscale Data from Stalagmites using ImageJ Software,” Cave and Karst Science, 50: 69-78
  26. Pride, L., Agehara, S., 2021, “Useful Image-Based Techniques for Manual and Automatic Counting Using ImageJ for Horticultural Research,” Edis, 2021: 1-10
  27. Mendes, G.N., Floresta, L.G., Takeshita, W.M., Brasileiro, B.F., Trento, C.L., 2025, “The Application of ImageJ Software for Roughness Analysis of Dental Implants,” Journal of Imaging Informatics in Medicine, 38: 1812-1819
  28. Utomo, F.F., Rashyid, M.I., Nugraha, A.D., Muflikhun, M.A., 2024, “A Recent Review on The Failure Analysis Of Boiler,” Jurnal Rekayasa Mesin, 15: 619-646
  29. Tadge, P., Kumar, S., De, S.K., Mohanty, S.K., 2022, “Metallurgical Investigation of Boiler Tube Failure in A Power Plant,” Materials Today: Proceedings, 66: 3799-3803
  30. Flynn, D., 2011, “Nalco Guide to Boiler Failure Analysis,” McGraw Hill Professional, New York
  31. Lobley, G.R., Al-Otaibi, W.L., 2008, “Diagnosing Boiler Tube Failures Related to Overheating,” Advanced Materials Research, 41-42: 175-181
  32. Purbolaksono, J., Hong, Y.W., Nor, S.S.M., Othman, H., Ahmad, B., 2008, “Evaluation on Reheater Tube Failure,” Engineering Failure Analysis, 16: 533-537
  33. Gouné, M., Andrieu, E., Brechet, Y., Deschamps, A., Douin, J., Fivel, M., Poulon-Quintin, A. 2019, “The Basics to Better Understand Couplings in Physical Metallurgy, in: Mechanics - Microstructure - Corrosion Coupling: Concepts, Experiments, Modeling and Cases,” Elsevier, p. 25–48
  34. Cochrane, R.F., “Normalised Carbon Steel,” https://www.flickr.com/photos/core-materials/3838605421/, diakses: 11 Juni 2025
  35. Yang, X., Yu, C., Yang, X., Yan, K., Qian, G., Wang, B., Yan, W., Shi, X., 2021, “Microstructure and Mechanical Properties of an Austenitic Heat-Resistant Steel after Service at 570 °C and 25.4 MPa for 18 Years,” Journal of Materials Engineering and Performance, 30: 1030-1038
  36. Jane, V. A., Arockiam, L., 2021, “Survey on IoT Data Preprocessing,” Turkish Journal of Computer and Mathematics Education, 12: 238-244

Last update:

No citation recorded.

Last update:

No citation recorded.