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Abstrak 

 

Analisis metalografi kuantitatif menyediakan hubungan fundamental antara struktur mikro material 

seperti dislokasi, fasa, dan ukuran grain dengan sifat mekaniknya. Namun, metode evaluasi 

konvensional sering kali mengandalkan teknik manual atau komparatif sehingga memakan waktu dan 

menimbulkan subjektivitas karena bergantung pada keahlian operator. Mengatasi hal tersebut, 

penelitian ini bertujuan mengembangkan dan memvalidasi metode otomatis menggunakan bahasa 

pemrograman Python, didukung oleh library seperti OpenCV dan Scikit-Image, dalam melakukan 

ekstraksi kuantitatif fitur total area dan fraksi area dari gambar mikrostruktur dislokasi, fasa, serta 

grain. Metode ini diimplementasikan mengikuti alur kerja image processing secara sistematis, dimulai 

dengan kalibrasi, konversi skala abu-abu (grayscale), dan median filtering sebagai peredam noise. 

Segmentasi objek, sebuah langkah penting dalam mengisolasi fitur, diterapkan menggunakan metode 

thresholding Otsu. Proses validasi dilakukan dengan menguji hasil metode Python terhadap ImageJ, 

software yang telah menjadi standar acuan oleh komunitas ilmiah. Perbandingan tersebut dikuantifikasi 

menggunakan metrik mean absolute percentage error (MAPE) untuk mengukur deviasi. Hasil validasi 

menunjukkan akurasi yang tinggi, dengan nilai MAPE secara konsisten berkisar antara 0% hingga 

0,828%. Analisis pada gambar dislokasi dan grain bahkan menunjukkan data identik dengan ImageJ. 

Studi ini membuktikan bahwa Python dapat berfungsi sebagai alternatif yang valid, andal, dan efisien. 

Keunggulan utamanya mencakup potensi otomatisasi, peningkatan objektivitas analisis, dan kapabilitas 

dalam memproses dataset berskala besar. 

 

Kata kunci: image processing; metalografi kuantitatif; otomatisasi; python; segmentasi 

 

Abstract 

 

Quantitative metallographic analysis provides a fundamental link between a material's microstructure 

such as dislocations, phases, and grain size and its mechanical properties. However, conventional 

evaluation methods often rely on manual or comparative techniques, which are time-consuming and 

introduce subjectivity due to their dependence on operator expertise. To address this, the study aims to 

develop and validate an automated method using the Python programming language, supported by 

libraries such as OpenCV and Scikit-Image, for the quantitative extraction of total area and area 

fraction features from the microstructure images of dislocations, phases, and grains. This method was 

implemented following a systematic image processing workflow, beginning with calibration, grayscale 

conversion, and median filtering for noise reduction. Object segmentation, a critical step for isolating 

the desired features, was performed using Otsu's thresholding method. The validation process was 

conducted by testing the results of the Python method against ImageJ, a software widely accepted as a 

reference standard within the scientific community. This comparison was quantified using the mean 

absolute percentage error (MAPE) metric to measure the deviation. The validation results 

demonstrated high accuracy, with MAPE values consistently ranging from 0% to 0.828%. 

Furthermore, the analysis of dislocation and grain images showed results identical to those from 

ImageJ. This study proves that Python can serve as a valid, reliable, and efficient alternative. Its 

primary advantages include the potential for automation, increased objectivity in analysis, and the 

capability to process large-scale datasets. 
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1. Pendahuluan 

Metalografi berperan dalam menganalisis struktur dan komponen paduan logam pada komposisi kimia tertentu. 

Metode ini menganalisis gambar struktur makro dan mikro, sehingga memungkinkan deteksi cacat pada material logam 

serta identifikasi penyebabnya. Dengan demikian, metalografi dapat menentukan struktur mikro paling efisien pada 
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suatu penerapan tertentu. Pada pemeriksaan makroskopis, evaluasi struktur makro bertujuan mendeteksi cacat 

berukuran lebih besar seperti retakan dan porositas. Penerapan teknik makroskopis ini meliputi pengendalian kualitas, 

analisis kegagalan, dan sebagai tahap awal sebelum pemeriksaan mikroskopis. Adapun pemeriksaan mikroskopis 

bertujuan mengidentifikasi detail struktur mikro, seperti jenis fasa, ukuran dan bentuk grain, hingga mendeteksi cacat 

lebih kecil, misalnya inklusi, ketidakhomogenan, dan retakan mikro [1]. 

Metalografi kuantitatif memegang peran penting dalam ilmu dan rekayasa material [2]. Metalografi kuantitatif 

unggul karena kemampuannya menghubungkan antara proses dan struktur mikro dengan sifat mekanik serta fisik 

material. Salah satu keunggulan utamanya dapat menyediakan data numerik secara langsung, berguna dalam memahami 

sifat mekanik logam. Proses fundamental ini berlaku pada penyempurnaan material lama maupun pengembangan 

material baru [3]. Analisis komposisi struktur internal dapat mempermudah pemahaman terhadap suatu material. Proses 

karakterisasi material ini menggunakan beragam instrumen, seperti mikroskop optik dan mikroskop elektron. Analisis 

metalografi kuantitatif penting guna memahami hubungan kuantitatif antara struktur dan kinerja material [4]. 

Metalografi kuantitatif menentukan berbagai parameter struktur mikro seperti kerapatan dislokasi, rasio luas antarmuka 

terhadap volume, distribusi fasa, dan ukuran grain. Namun, pada penampang dua dimensi sampel metalografi, tidak 

semua parameter tersebut bisa diukur secara langsung [5]. Oleh sebab itu, ruang lingkup pembahasan pada studi ini 

terbatas pada analisis pengukuran total area dan fraksi area. Sifat mekanik material berhubungan langsung dengan 

struktur mikronya [6]. Analisis struktur internal material, seperti dislokasi, berperan dalam deformasi plastis [7], fasa, 

penting bagi penilaian kualitas material [8], dan ukuran grain, berpengaruh pada perilaku mekanik [9], semuanya 

menghasilkan output berupa angka setelah melalui proses analisis metalografi kuantitatif. Evaluasi kuantitatif dari fitur-

fitur ini membantu dalam menyesuaikan sifat material, sehingga menjadikan metalografi kuantitatif sebuah metode 

fundamental dalam mengevaluasi material. 

Pemeriksaan mikroskopis merupakan langkah penting dalam studi dan karakterisasi material. Beberapa 

penerapan penting dari pemeriksaan struktur mikro antara lain memastikan hubungan antara sifat, struktur, dan cacat 

dapat dipahami dengan benar, memprediksi sifat material dengan pertimbangan hubungan-hubungan tersebut, serta 

perancangan paduan baru. Sifat mekanik material berhubungan langsung dengan dislokasi atau cacat linier satu dimensi 

pada susunan atom. Cacat ini umumnya terbentuk selama proses pemadatan, deformasi plastis, tekanan termal, dan 

dapat diamati menggunakan mikroskop elektron. Beberapa karakteristik dislokasi berkaitan dengan sifat mekanik 

logam, termasuk medan regangan di sekitarnya sebagai penentu kemudahan pergerakan dan pertambahan jumlah 

dislokasi. Kemampuan perubahan bentuk plastis suatu material bergantung pada kemampuan pergerakan dislokasi. 

Dengan mengurangi mobilitas dislokasi, kebutuhan gaya mekanis agar terjadi deformasi plastis menjadi lebih besar, 

sehingga kekuatan mekanis material dapat meningkat. Sebaliknya, semakin tidak dibatasi pergerakan dislokasi, maka 

semakin mudah material berubah bentuk. Hampir semua teknik penguatan material bergantung pada prinsip pembatasan 

atau penghalangan gerakan dislokasi. Transisi deformasi dari elastis ke plastis terjadi secara bertahap pada sebagian 

besar logam, namun dapat meningkat cepat dengan meningkatnya regangan. Dengan meningkatnya laju regangan, 

kepadatan dan medan regangan tolak-menolak antar dislokasi juga meningkat. Hal ini menyebabkan mobilitas dislokasi 

berkurang sehingga meningkatkan kekuatan dan kekerasan material [10]. 

Konsep fasa memegang peranan krusial dalam pemahaman struktur mikro serta sifat material. Fasa didefinisikan 

sebagai area suatu material dengan karakteristik fisik dan kimia seragam. Saat lebih dari satu fasa hadir, masing-masing 

akan memiliki sifat berbeda, seperti sifat fisik, mekanik, juga termal. Material satu fasa disebut homogen, sementara 

material dua fasa atau lebih disebut heterogen, dan sebagian besar paduan logam adalah heterogen. Perilaku mekanis 

suatu material bergantung pada struktur mikronya, direpresentasikan oleh jumlah fasa, proporsi, serta distribusinya. 

Contohnya pada baja, fasa ferit lebih lunak dan ulet, memberikan sifat tangguh. Sebaliknya, fasa perlit atau martensit 

lebih keras sehingga meningkatkan kekuatan tarik dan ketahanan aus. Struktur mikro ini dapat berkembang dari 

transformasi fasa, sebuah perubahan akibat variasi temperatur, umumnya selama proses pendinginan. Pemahaman 

mengenai jenis fasa beserta fraksinya pada material memungkinkan klasifikasi, prediksi, dan kontrol terhadap perilaku 

material [10]. 

Grain penyusun dari setiap material mempunyai bentuk dan distribusi ukuran beragam. Pengecilan ukuran grain 

dapat meningkatkan hambatan terhadap pergerakan dislokasi sekaligus meningkatkan tegangan diperlukan bagi 

dislokasi melintasi batas grain, sehingga meningkatkan kekuatan dan ketangguhan atau kekuatan luluh material [10, 

11]. Beberapa jenis material sering kali ditempatkan pada kondisi suhu tinggi dan terkena tekanan mekanis statis, 

sehingga rentan terjadi deformasi atau creep. Beberapa faktor penentu karakteristik creep pada logam antara lain suhu 

leleh, modulus elastisitas, dan ukuran grain. Secara umum, semakin tinggi suhu leleh atau semakin besar modulus 

elastisitas dan ukuran grain, maka semakin baik ketahanan material terhadap creep. Sebaliknya, ukuran grain lebih 

kecil memungkinkan terjadinya pergeseran batas grain lebih besar, sehingga meningkatkan laju creep pada suhu tinggi 

[10]. 

Pengukuran kuantitatif struktur mikro sangat penting dalam studi pengendalian kualitas serta sifat material. 

Selama bertahun-tahun, ahli metalurgi mengandalkan analisis kualitatif atau perbandingan dengan grafik standar. 

Metode ini tidak memiliki sensitivitas memadai dan hasilnya bias, hanya berupa estimasi, dan bergantung pada keahlian 

operator [12]. Di era digital saat ini terdapat beragam alat pemrosesan serta analisis gambar [13]. Salah satunya adalah 

image processing, sebuah disiplin ilmu berfokus pada penggunaan algoritma komputasi untuk manipulasi, analisis, dan 
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interpretasi data gambar [14]. Tujuan utamanya adalah peningkatan kualitas visual atau ekstraksi informasi, sekaligus 

membantu otomatisasi pekerjaan dan penanganan data gambar dalam jumlah besar [15, 16]. Di antara berbagai 

metodologinya, segmentasi gambar memegang peranan krusial. Kemampuan memisahkan objek dari latar belakang 

atau objek lain secara akurat merupakan langkah penentu tugas-tugas seperti ekstraksi fitur dan pengenalan objek [17]. 

Teknik ini dapat diterapkan dalam identifikasi dislokasi, klasifikasi jenis-jenis fasa, serta analisis struktur grain. 

Kompleksitas algoritma image processing menuntut sebuah platform komputasi fleksibel, kuat, dan mudah 

diakses. Saat ini Python telah diadopsi secara masif dan menjadi platform pilihan para peneliti. Filosofi desainnya 

mengutamakan keterbacaan kode serta sintaksisnya jelas, memungkinkan pemrogram mengekspresikan konsep secara 

ringkas [18]. Sintaksis sederhana ini mempermudah proses belajar bagi pemula sekaligus mempercepat pengembangan 

bagi profesional [19]. Popularitas Python juga didorong oleh ekosistem library pihak ketiga, berkat sifat open source-

nya. Fondasi ekosistem ini adalah NumPy, penyedia struktur data array N-dimensi efisien, sebuah representasi data 

natural bagi gambar berbasis matriks piksel. Di atas fondasi ini berdiri beberapa library lain seperti OpenCV. Library 

ini menyediakan ribuan algoritma dari operasi dasar hingga tugas computer vision tingkat tinggi seperti deteksi objek 

[20]. Terdapat pula Scikit-Image, sebuah library khusus analisis gambar ilmiah, unggul dalam algoritma segmentasi, 

ekstraksi fitur, dan juga restorasi gambar [21]. 

Pemanfaatan otomasi dan fleksibilitas Python dapat mengoptimalkan proses ekstraksi fitur skala besar, sehingga 

mempersingkat waktu analisis dibandingkan dengan software konvensional. Namun, pengembangan kode khusus pada 

Python membawa tantangan signifikan mengenai kebutuhan validasi serta verifikasi. Mengatasi tantangan ini, 

diperlukan sebuah standar acuan teruji dan diterima luas oleh komunitas ilmiah. ImageJ telah lama berstatus sebagai 

standar analisis gambar biomedis dan ilmiah. ImageJ merupakan software pemrosesan gambar open source berbasis 

Java. Karena berbasis Java, ImageJ dapat berjalan secara lintas platform di berbagai sistem operasi seperti Windows, 

macOS, dan Linux. Software ini memiliki fungsi visualisasi, pemrosesan, analisis, dan pengukuran gambar ilmiah, 

menjadikannya sebuah alat serbaguna bagi beragam disiplin ilmu. Kemampuannya meliputi manipulasi piksel, 

pengukuran luas, segmentasi objek, hingga penghitungan partikel [22]. Fleksibilitas ImageJ terlihat dari penerapannya 

di berbagai disiplin ilmu. Dalam bidang kedokteran, software ini digunakan untuk mengukur permukaan luka bakar 

[23], sementara di ilmu material, ImageJ diandalkan dalam kuantifikasi fitur mikro seperti porositas dan ukuran grain 

[24]. Kegunaannya juga meluas ke bidang lain seperti geologi [25], hortikultura [26], dan kedokteran gigi [27]. 

Kepercayaan komunitas ilmiah terhadap hasil pengukuran ImageJ menjadikannya kandidat ideal sebagai alat validasi. 

Salah satu pengaplikasian image processing dalam analisis metalografi kuantitatif adalah evaluasi pipa boiler. 

Sebagai sistem penyuplai energi, kegagalan dan penurunan efisiensi komponen boiler dapat mengakibatkan 

berkurangnya produktivitas. Beberapa jenis kegagalan bahkan dapat menjadi bencana, seperti menyebabkan cedera dan 

kematian pada manusia [28]. Pipa boiler beroperasi pada kondisi ekstrim, meliputi temperatur dan tekanan tinggi serta 

lingkungan korosif sehingga rentan mengalami kerusakan. Evaluasi kondisi pipa boiler merupakan hal penting guna 

memantau keadaan metalurgi komponen karena struktur mikro dapat mempengaruhi sifat serta kinerjanya [29]. 

Overheating merupakan salah satu mekanisme kegagalan paling umum pada pipa boiler, terutama pada jenis 

superheater dan reheater. Degradasi akibat overheating dapat meningkat seiring meningkatnya suhu, tekanan, dan 

waktu. Tekanan pada pipa boiler, umumnya berasal dari tekanan internal, dapat menyebabkan deformasi pada suhu 

tinggi. Investigasi kegagalan akibat overheating memerlukan analisis cermat terhadap komponen rusak, termasuk 

pemeriksaan mikroskopis. Pemeriksaan ini bertujuan mengidentifikasi perubahan struktur mikro material serta bentuk 

degradasi lain terkait paparan suhu tinggi. Bukti dari struktur mikro merupakan sumber informasi utama dalam 

penilaian kondisi overheating [30]. Karena perubahan struktur mikro dapat terjadi akibat suhu tinggi [31], pemeriksaan 

struktur mikro pada pipa boiler menjadi metode efisien dalam mengenali jenis kegagalan overheating [32]. 

Penelitian ini bertujuan mengetahui hasil ekstraksi fitur total area dan fraksi area sampel dislokasi, fasa, dan 

grain menggunakan Python. Dengan menerapkan serangkaian teknik image processing, hasil ekstraksi fitur ini 

kemudian dibandingkan dengan hasil dari software ImageJ. Perbandingan ini bertujuan memastikan algoritma yang 

dikembangkan dengan bahasa pemrograman Python mampu menghasilkan tingkat akurasi setara dengan metode 

konvensional dalam analisis metalografi. Hasil penelitian ini diharapkan memberi gambaran kuantitatif mengenai 

performa Python dalam analisis gambar metalografi sekaligus membuka peluang pengembangan kode terstandarisasi di 

masa depan. 

 

 

2. Bahan dan Metode Penelitian 

Bab ini menguraikan alur kerja serta metodologi penelitian secara sistematis. Pembahasannya mencakup empat 

tahapan utama. Pertama, proses pengumpulan data gambar metalografi, kedua, serangkaian langkah data preprocessing, 

ketiga, pelabelan dan ekstraksi fitur, dan diakhiri dengan metode validasi sebagai penguji akurasi hasil. Setiap tahapan 

akan dijelaskan secara rinci pada subbab dan sub-subbab. 

2.1 Pengumpulan Data 

Data didapatkan secara daring melalui berbagai sumber, mulai dari artikel penelitian hingga website. Data yang 

digunakan pada penelitian ini berjumlah tiga gambar mikrografi dari sampel metalografi berbeda jenis, diantaranya 

gambar dislokasi dari paduan nikel-kromium dengan 30% atom kromium, gambar fasa berasal dari paduan besi–karbon 
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berisi 0,2% massa karbon, serta gambar grain dengan sampel material baja 12Cr18Ni12Ti. Ketiga gambar tersebut 

ditampilkan secara berurutan pada Gambar 1a, 1b, dan 1c. 

    
   (a)             (b)            (c) 

Gambar 1. Sampel Metalografi (a) Dislokasi [33] (b) Fasa [34] (c) Grain [35]. 

 

2.2 Data Preprocessing 

Data preprocessing merupakan sebuah langkah esensial dalam image processing, bertujuan membersihkan, 

memperbaiki, dan meningkatkan kualitas data mentah sebelum dianalisis [36]. Tahap ini diperlukan karena data sering 

kali tidak berada pada format terbaiknya sehingga dapat memengaruhi hasil. Alur data preprocessing bervariasi 

tergantung karakteristik data, sehingga pada penelitian ini terdapat langkah tambahan khusus pada gambar sampel 

grain. 

2.2.1 Kalibrasi Ukuran 

Langkah awal data preprocessing kali ini adalah kalibrasi, sebuah proses pengukuran panjang scalebar pada 

setiap gambar dalam satuan piksel. Proses ini menggunakan software ImageJ sebagai alat kalibrasi ukuran gambar 

metalografi. Kalibrasi bersifat krusial guna memastikan hasil analisis dapat diinterpretasikan dalam satuan fisik 

sebenarnya, sehingga meningkatkan validitas penelitian. Proses kalibrasi diterapkan pada ketiga sampel gambar. Pada 

gambar dislokasi atau Gambar 2a, scalebar 500 nm terukur setara 163 piksel, menghasilkan rasio konversi 1 piksel 

senilai 3,067 nm. Selanjutnya, gambar fasa memiliki scalebar 200 μm, setara dengan 291 dalam piksel, sehingga 

menghasilkan skala konversi 1 piksel senilai 0,687 μm seperti yang terlihat pada Gambar 2b. Terakhir, pada gambar 

grain atau Gambar 2c, scalebar 50 μm setara dengan 71 piksel, dari data ini disimpulkan nilai 1 pikselnya adalah 

0,7042 µm di dunia nyata. 

     
    (a)         (b)       (c) 

Gambar 2. Kalibrasi Skala dengan Software ImageJ (a) Dislokasi (b) Fasa (c) Grain. 

 

2.2.2 Konversi Grayscale 

Konversi gambar dari format berwarna (RGB) menjadi skala abu-abu (grayscale) adalah sebuah langkah 

fundamental dalam pemrosesan gambar metalografi. Gambar berwarna terdiri atas tiga saluran warna, merah, hijau, dan 

biru, sementara gambar skala abu-abu hanya memiliki satu saluran, merepresentasikan tingkat kecerahan dari 0 (hitam) 

hingga 255 (putih). Perubahan ke skala abu-abu ini secara signifikan mengurangi kebutuhan memori serta daya 

komputasi. Proses ini menyederhanakan analisis, memungkinkan fokus hanya terhadap perbedaan intensitas piksel, 

bukan informasi warna kompleks. Penelitian ini mengonversi setiap gambar metalografi melalui fungsi cv2.cvtColor() 

dari library OpenCV Python, hasil konversinya terlihat pada Gambar 3a, Gambar 3b, dan Gambar 3c. 

   
       (a)            (b)                (c) 

Gambar 3. Konversi Menjadi Format Grayscale (a) Dislokasi (b) Fasa (c) Grain. 
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2.2.3 Filtering 

Filtering adalah teknik pereduksi noise atau peningkat fitur visual gambar melalui penerapan filter matematis ke 

setiap piksel berdasarkan nilai piksel sekitarnya. Salah satu jenisnya adalah smoothing filter (seperti mean, Gaussian, 

dan median), berfungsi menghaluskan gambar dengan mereduksi noise. Penelitian ini menerapkan fungsi 

cv2.medianBlur() dari OpenCV dengan kernel berukuran 3x3. Teknik median blur berfungsi menghaluskan gambar 

mikrografi serta meminimalkan noise dengan cara mengganti nilai setiap piksel menjadi nilai median dari piksel-piksel 

sekitarnya. Keunggulan median filter adalah kemampuannya dalam menjaga ketajaman batas objek, karena filter ini 

hanya menggunakan nilai-nilai piksel yang ada tanpa menciptakan nilai baru. Filter median blur ini diterapkan ke setiap 

gambar metalografi, dengan hasil prosesnya ditampilkan pada Gambar 4a, Gambar 4b, dan Gambar 4c. 

   
   (a)     (b)        (c) 

Gambar 4. Filtering Median Blur dengan Kernel 3x3 (a) Dislokasi (b) Fasa (c) Grain. 

 

2.2.4 Segmentasi 

Binary thresholding merupakan salah satu teknik segmentasi, teknik ini mengubah gambar menjadi gambar biner 

berdasarkan nilai threshold tertentu. Proses thresholding menggunakan fungsi cv2.threshold() dari OpenCV dengan 

metode Otsu. Metode Otsu secara otomatis menentukan ambang batas optimal melalui analisis distribusi intensitas 

piksel. Metode Otsu mampu mensegmentasi objek dari latar belakangnya dalam histogram dua puncak, sekaligus 

beradaptasi terhadap variasi intensitas piksel kompleks. Proses ini menghasilkan gambar biner dengan nilai piksel 0  

dan 255 atau hitam putih sebagaimana terlihat pada Gambar 5a, Gambar 5b, dan Gambar 5c. Hasilnya adalah sebuah 

segmentasi jelas antara objek dan latar belakang, memungkinkan analisis akurat terhadap fitur material. 

   
    (a)              (b)                 (c) 

Gambar 5. Binary Thresholding dengan Metode Otsu (a) Dislokasi (b) Fasa (c) Grain 

 

2.2.5 Data Preprocessing Tambahan 

Khusus gambar grain, terdapat beberapa langkah tambahan guna memperoleh kualitas data maksimal. Setelah 

tahap thresholding, gambar sampel grain masih memiliki area titik-titik hitam atau kotoran. Oleh karena itu, diperlukan 

sebuah metode penyaring area tersebut dengan tetap mempertahankan batas grain. Solusinya adalah Connected 

Component Analysis (CCA), sebuah teknik image processing. CCA bekerja dengan cara mendeteksi serta melabeli 

setiap kelompok piksel terhubung dalam gambar biner. Setiap kelompok piksel terhubung akan diberi sebuah label unik. 

Dalam kasus gambar biner grain, teknik CCA dipakai supaya hanya mempertahankan komponen piksel hitam berarea 

terbesar, dalam hal ini adalah batas grain. Penerapan teknik ini memastikan analisis ukuran grain menjadi representatif 

terhadap struktur mikro sesungguhnya. Hal ini terjadi sebab titik-titik kecil atau kotoran sudah tersaring atau 

dihilangkan, sebagaimana terlihat pada Gambar 6. 

 
Gambar 6. Menghilangkan Kotoran pada Grain dengan Mempertahankan Area Piksel Warna Hitam Terbesar 

 
2.3 Pelabelan dan Ekstraksi Fitur 

Proses ekstraksi fitur bertujuan mengkuantifikasi parameter geometris dari gambar mikrostruktur material. 

Parameter terukur dalam penelitian ini adalah total area dan fraksi area, keduanya dapat digunakan dalam menganalisis 



Jurnal Teknik Mesin S-1, Vol. 13, No. 4, Tahun 2025 

Online: https://ejournal3.undip.ac.id/index.php/jtm 

 

JTM (S-1) – Vol. 13, No. 4, Oktober 2025:49-56  54 
 

perubahan kondisi material sebelum dan sesudah penggunaan. Proses ekstraksi diawali dengan pelabelan objek 

individual (dislokasi, fasa, grain) dalam gambar biner. Tahap ini memakai fungsi label() dari library scikit-image guna 

memberi label unik ke setiap objek terdeteksi. Proses pelabelan ini menjadi fondasi bagi ekstraksi fitur selanjutnya. 

Setelah semua objek teridentifikasi, properti morfologis setiap objek diekstraksi melalui fungsi regionprops() dari 

skimage.measure. Visualisasi proses pelabelan objek ini terlihat pada Gambar 7a, Gambar 7b, dan Gambar 7c. 

 
     (a)              (b)                 (c) 

Gambar 7. Pemberian Label pada Objek yang Telah Tersegmentasi (a) Dislokasi (b) Fasa (c) Grain. 

 

2.3.1 Perhitungan Total Area 

Total area didefinisikan sebagai jumlah akumulatif luas dari seluruh objek terdeteksi dalam sebuah gambar. 

Perhitungannya menjumlahkan properti area (dalam piksel) dari setiap region hasil fungsi regionprops(). Demi efisiensi 

komputasi, khususnya dalam gambar berisi banyak objek, digunakan pendekatan generator expression lalu 

diakumulasikan dengan fungsi sum(). Nilai total area dalam piksel selanjutnya dikonversi ke satuan metrik, nanometer 

bagi gambar dislokasi, mikrometer bagi gambar fasa dan grain. Konversi ini memakai faktor kalibrasi hasil penentuan 

sebelumnya melalui software ImageJ. Faktor konversi tersebut dikuadratkan guna mengubah satuan dari piksel persegi 

menjadi metrik satuan luas.  

2.3.2 Perhitungan Fraksi Area 

Fraksi area merepresentasikan persentase cakupan area objek terhadap total area keseluruhan gambar. Nilai ini 

dihitung melalui pembagian total area objek dengan total area gambar, lalu hasilnya dikalikan 100. Area total gambar 

dalam piksel diperoleh dari atribut size milik gambar dari hasil pelabelan. Hasil perhitungan ini memberikan persentase 

cakupan area objek pada keseluruhan gambar. Kedua proses ini menghasilkan sebuah representasi pengukuran total area 

dan dapat dibandingkan dengan standar analisis material. 

2.4 Validasi 

Validasi dilakukan sebagai pembuktian bahwa hasil penelitian dapat dipertanggungjawabkan serta diandalkan. 

Metode validasi penelitian ini adalah membandingkan hasil ekstraksi fitur antara metode berbasis Python dengan 

software ImageJ. Metrik evaluasi yang dipakai meliputi mean absolute error sebagai pengukur rata-rata selisih absolut, 

serta mean absolute percentage error sebagai pengukur eror dalam persentase. Dalam validasi ini, hasil dari ImageJ 

dijadikan benchmark atau acuan verifikasi. Guna memastikan keadilan dalam perbandingan, gambar pada ImageJ 

diproses melalui alur sama persis dengan metode Python, mencakup kalibrasi, filtering, dan tahapan lainnya 

menggunakan fitur standar ImageJ. Dengan demikian, hasil perolehan dari Python dapat diuji reliabilitasnya terhadap 

metode konvensional. 

 

3. Hasil dan Pembahasan 

Bab ini menyajikan hasil ekstraksi fitur kuantitatif dari analisis gambar metalografi menggunakan metode 

berbasis Python. Validasi akurasi metode ini dilakukan dengan membandingkan hasilnya terhadap pengukuran software 

ImageJ. Jenis fitur terekstraksi mencakup total area dan fraksi area dari ketiga objek metalografi seperti dislokasi, fasa 

ferit serta perlit, dan grain. 

3.1 Ekstraksi Fitur Kuantitatif 

Hasil perhitungan total area setiap objek disajikan dalam satuan mikrometer persegi (µm²) atau nanometer 

persegi (nm²), setelah dikonversi dari satuan piksel. Total area dihitung melalui akumulasi luas setiap objek terdeteksi 

pada gambar. Sementara itu, fraksi area merepresentasikan perbandingan persentase antara total area objek terhadap 

total area gambar. Ringkasan hasil ekstraksi kedua fitur tersebut tersaji dalam Tabel 1. 

 

Tabel 1. Hasil Ekstraksi Fitur Kuantitatif 

Objek Total Area Fraksi Area 

Dislokasi 329424,651  8,446% 

Ferit 92930,696  76,853% 

Perlit 27989,650  23,147% 

Grain 258707,319  92,068% 
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3.2 Validasi Metode 

Dalam memvalidasi akurasi metode pengembangan, hasil dari Python dibandingkan dengan hasil pengukuran 

software ImageJ sebagai standar acuan. Perbandingan ini menghitung metrik mean absolute error (MAE) dan mean 

absolute percentage error (MAPE). Hasil perbandingan kedua metode disajikan dalam Tabel 2. 

 

Tabel 2. Hasil Validasi Metode Python dengan software ImageJ 

Objek Fitur Metode Python Metode ImageJ MAE MAPE 

Dislokasi 
Total Area 329424,651 nm² 329528,774 nm² 104,123 nm² 0.032% 

Fraksi Area 8,446% 8,446% 0% 0.000% 

Ferit 
Total Area 92930,696 µm² 93237,447 µm² 306,751 µm² 0.329% 

Fraksi Area 76,853% 77,043% 0,19% 0.247% 

Perlit 
Total Area 27989,650 µm² 27783,328 µm² 206,322 µm² 0.743% 

Fraksi Area 23,147% 22,957% 0,19% 0.828% 

Grain 
Total Area 258707,319 µm² 258725,946 µm² 18,627 µm² 0.007% 

Fraksi Area 92,068% 92,068% 0% 0.000% 

 

3.3 Pembahasan 

Metode ekstraksi fitur kuantitatif berbasis Python hasil pengembangan ini menunjukkan tingkat kesesuaian 

tinggi dengan software ImageJ. Hasil validasi dalam Tabel 2 memperlihatkan nilai mean absolute percentage error 

(MAPE) rendah bagi semua fitur analisis, berkisar antara 0% hingga 0,828%. Nilai eror ini berada jauh di bawah 

ambang batas 5%, sebuah standar akurasi baik dalam literatur ilmiah, sehingga mengonfirmasi validitas serta reliabilitas 

metode. Analisis dislokasi dan grain menghasilkan data hampir identik antara metode Python dan ImageJ, dengan nilai 

MAPE fraksi area 0%. Perbedaan sedikit lebih besar, meskipun tetap rendah, teramati pada analisis fasa ferit dan perlit. 

Perbedaan minor ini kemungkinan timbul dari beberapa faktor, seperti kompleksitas batas antarfasa, kemungkinan 

variasi implementasi algoritma thresholding Otsu antara OpenCV dan ImageJ, atau variasi pencahayaan gambar. 

Meskipun terdapat perbedaan minor tersebut, hasil validasi secara meyakinkan membuktikan analisis gambar 

metalografi menggunakan Python merupakan pendekatan valid dan dapat diandalkan. Kemampuan metode ini 

mereplikasi hasil dari software konvensional seperti ImageJ dengan akurasi tinggi, menegaskan potensi Python sebagai 

alat yang kuat, fleksibel, juga efisien dalam otomatisasi analisis material serta peningkatan objektivitas. 

 

4. Kesimpulan 

Penelitian ini berhasil mengembangkan serta memvalidasi sebuah metode analisis gambar otomatis berbasis 

Python dengan tujuan kuantifikasi fitur metalografi. Sesudah validasi dengan software acuan ImageJ, metode 

pengembangan ini terbukti akurat dan andal. Hal ini ditunjukkan melalui nilai mean absolute percentage error (MAPE) 

rendah, berkisar 0% hingga 0,828%, jauh di bawah ambang batas literatur ilmiah. Terdapat perbedaan kecil dalam 

analisis fasa, kemungkinan disebabkan perbedaan pada implementasi algoritma segmentasi. Temuan ini membuktikan 

bahwa Python, dengan ekosistem library open-source-nya, merupakan alternatif valid, efisien, juga fleksibel bagi 

analisis metalografi kuantitatif. Implikasinya penting bagi otomatisasi analisis material berskala besar, percepatan riset, 

serta peningkatan objektivitas. Meskipun demikian, penelitian ini memiliki keterbatasan, termasuk cakupan data hanya 

tiga jenis gambar dan ekstraksi fitur hanya meliputi total area serta fraksi area. Oleh karena itu, penelitian masa depan 

disarankan memperluas pengujian pada beragam jenis dataset, ekstraksi fitur lebih kompleks, hingga pengembangan 

sebuah aplikasi dengan graphical user interface demi kemudahan penggunaan. 
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