skip to main content

PERENCANAAN SISTEM MEKANIK DAN KINEMATICS SWERVE WHEEL UNTUK AUTONOMOUS MOBILE ROBOT

*Hermawan Putranto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Munadi Munadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mochammad Ariyanto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Perkembangan teknologi robotika mendorong kebutuhan akan sistem mekanik roda yang fleksibel dan presisi untuk mendukung mobilitas robot otonom. Salah satu solusi yang ditawarkan adalah penggunaan mekanisme swerve wheel, yang memungkinkan roda bergerak secara independen dalam translasi dan rotasi, sehingga robot dapat bermanuver ke segala arah tanpa mengubah orientasi badan. Penelitian ini bertujuan untuk merancang dan membangun mekanisme swerve wheel tipe koaksial dengan konfigurasi tiga roda sebagai basis sistem mobilitas robot. Metode penelitian meliputi analisis kebutuhan torsi, perhitungan rasio gear, pemodelan kinematika, serta proses manufaktur yang mencakup pencetakan 3D untuk komponen penopang, pemesinan CNC untuk base plate, pengeboran batang hollow, hingga perakitan komponen mekanik seperti shaft, bearing, roda, dan motor BLDC. Hasil penelitian menunjukkan bahwa prototipe swerve wheel yang dihasilkan memiliki konstruksi yang kokoh, ringan, serta mendukung pergerakan roda dengan presisi, sehingga memenuhi kriteria perancangan mekanisme untuk aplikasi robot otonom. Dengan demikian, rancangan ini dapat menjadi dasar pengembangan sistem mobilitas robot dengan tingkat manuverabilitas tinggi di masa depan.

Fulltext View|Download
Keywords: kinematika; manufaktur; perancangan mekanik; robot otonom; swerve wheel
  1. Appusamy, A. M., Karuppan, S., Subramaniyan, M., & Chinnappan, B. A. (2024). Influence of filler and FDM printing parameters on PLA tensile strength. Polimery/Polymers, 69(2), 92–102. https://doi.org/10.14314/polimery.2024.2.3
  2. DeNoma, Benjamin, Kendall, Michael, Poulos, & Nick. (2022). 4-wheel Independent Steering “Swerve Drive.”
  3. Diah Ika Putri, M., Ma’arif, A., & Dwi Puriyanto, R. (2022). Pengendali Kecepatan Sudut Motor DC Menggunakan Kontrol PID dan Tuning Ziegler Nichols. Techno (Jurnal Fakultas Teknik, Universitas Muhammadiyah Purwokerto), 23(1). https://doi.org/10.30595/techno.v23i1.10773
  4. Rosyidin, A. A., Siradjuddin, I., Putri, R. I., & Achmadiah, M. N. (2024). Kinematic of 3-Wheels Swerve Drive Using BLDC Motor. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v9i3.1995
  5. Tagliavini, L., Colucci, G., Botta, A., Cavallone, P., Baglieri, L., & Quaglia, G. (2022). Wheeled Mobile Robots: State of the Art Overview and Kinematic Comparison Among Three Omnidirectional Locomotion Strategies. Journal of Intelligent and Robotic Systems: Theory and Applications, 106(3). https://doi.org/10.1007/s10846-022-01745-7
  6. Tun, T. T., Huang, L., Mohan, R. E., & Matthew, S. G. H. (2019). Four-wheel steering and driving mechanism for a reconfigurable floor cleaning robot. Automation in Construction, 106. https://doi.org/10.1016/j.autcon.2019.03.017
  7. Vranas, M., & Mourtos, N. J. (2022). Compact Shaft-Rotating Swerve Drive with Prong Structure for Highly-Maneuverable and Agile Robots. Athens Journal of Τechnology & Engineering, 9(1), 25–42. https://doi.org/10.30958/ajte.9-1-2
  8. A. A. Rosyidin, I. Siradjuddin, R. I. . Putri, and M. N. Achmadiah, “Kinematic of 3-Wheels Swerve Drive Using BLDC Motor”, KINETIK, vol. 9, no. 3, Aug. 2024. https://doi.org/10.22219/kinetik.v9i3.1995
  9. D. Rijalusalam and I. Iswanto, “Implementation Kinematics Modeling and Odometry of Four Omni Wheel Mobile Robot on The Trajectory Planning and Motion Control Based Microcontroller,” Journal of Robotics and Control (JRC), vol. 2, Jan. 2021. https://doi.org/10.18196/jrc.25121
  10. N. Ghobadi and S. F. Dehkordi, “Dynamic modeling and sliding mode control of a wheeled mobile robot assuming lateral and longitudinal slip of wheels,” in 2019 7th International Conference on Robotics and Mechatronics (ICRoM), Nov. 2019, pp. 150–155. https://doi.org/10.1109/ICRoM48714.2019.9071913
  11. A. Sofwan, H. R. Mulyana, H. Afrisal, and A. Goni, “Development of Omni-Wheeled Mobile Robot Based-on Inverse Kinematics and Odometry,” in 2019 6th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), 2019, pp. 1–6. https://doi.org/10.1109/ICITACEE.2019.8904418
  12. D. and B. F. and P. J. I. Yunardi Riky Tri and Arifianto, “Holonomic implementation of three wheels omnidirectional mobile robot using DC motors,” Journal of Robotics and Control (JRC), vol. 2, pp. 65–71, 2021. https://doi.org/10.18196/jrc.2254
  13. H. Taheri and C. X. Zhao, “Omnidirectional mobile robots, mechanisms and navigation approaches,” Mech Mach Theory, vol. 153, p. 103958, 2020. https://doi.org/10.1016/j.mechmachtheory.2020.103958
  14. M. Achmadiah, A. Rosyidin, A. Pracoyo, I. Siradjuddin, D. Permatasari, and G. Azhar, “Desain permodelan dan simulasi Field Oriented Control (FOC) menggunakan motor BLDC: Aplikasi pada Drive Train -Swerve Drive,” Jurnal Elektronika dan Otomasi Industri, vol. 10, pp. 361–368, Jun. 2023. https://doi.org/10.33795/elkolind.v10i3.4416
  15. X. Zhang, Y. Xie, L. Jiang, G. Li, J. Meng, and Y. Huang, “Trajectory Tracking of a 4wis4wid Robot Using Adaptive Receding Horizon Control Based on Neurodynamics Optimization,” in 2019 ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2019, pp. 565–570

Last update:

No citation recorded.

Last update:

No citation recorded.