skip to main content

ANALISIS KEKUATAN STRUKTUR TANGKI HYDROGEN TIPE 2 DENGAN TEKANAN KERJA 20MPA MENGGUNAKAN METODE ELEMEN HINGGA

*Zidane Ilham Ramadhan Achmad Sanusi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sulistyo Sulistyo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Analisis kekuatan struktur pada tangki hydrogen tipe 2 dengan tekanan kerja 20 MPa dilakukan dalam penelitian ini menggunakan metode elemen hingga (Finite Element Method, FEM). Tangki tipe 2 ini memiliki liner berbahan baja karbon AISI 1045 dan selimut komposit dari serat karbon yang direkatkan dengan resin epoxy, yang berperan dalam menahan tekanan tinggi gas hydrogen. Pemodelan numerik dilakukan untuk mengevaluasi distribusi tegangan, deformasi, dan potensi titik kegagalan pada tangki akibat tekanan internal. Hasil simulasi FEM menunjukkan bahwa kombinasi material AISI 1045 dan carbon fiber epoxy memberikan kekuatan struktural yang memadai untuk tekanan kerja yang ditetapkan, dengan distribusi tegangan yang relatif merata dan deformasi yang masih dalam batas aman. Penelitian ini menegaskan kemampuan metode elemen hingga dalam mengkaji keamanan dan performa tangki hydrogen tipe 2 dengan pengaruh material komposit modern sebagai penguat.

Fulltext View|Download
Keywords: aisi 1045; faktor keamanan; fem, hidrogen; tangki tipe ii; tegangan von-mises
  1. H. Ameli, G. Strbac, D. Pudjianto, and M. T. Ameli, “A review of the role of hydrogen in the heat decarbonization of future energy systems: Insights and perspectives,” Energies, vol. 17, no. 7, p. 1688, Apr. 2024, doi: 10.3390/en17071688
  2. P. Kut, K. Pietrucha-Urbanik, and M. Zeleňáková, “Assessing the role of hydrogen in sustainable energy futures: A comprehensive bibliometric analysis of research and international collaborations in energy and environmental engineering,” Energies, vol. 17, no. 8, p. 1862, Apr. 2024, doi: 10.3390/en17081862
  3. P. Cheekatamarla, “Hydrogen and the global energy transition—Path to sustainability and adoption across all economic sectors,” Energies, vol. 17, no. 4, p. 807, Feb. 2024, doi: 10.3390/en17040807
  4. E. Raouf, “Green hydrogen production and public health expenditure in hydrogen-exporting countries,” Int. J. Energy Econ. Policy, vol. 13, no. 6, pp. 36–44, 2023, doi: 10.32479/ijeep.14484
  5. N. Sánchez-Bastardo, R. Schlögl, and H. Ruland, “Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy,” Ind. Eng. Chem. Res., vol. 60, no. 33, pp. 11855–11881, Aug. 2021, doi: 10.1021/acs.iecr.1c01679
  6. A. L. Sutton, J. I. Mardel, and M. R. Hill, “Metal–organic frameworks (MOFs) as hydrogen storage materials at near-ambient temperature,” Chem. Eur. J., vol. 30, no. e202400717, Aug. 2024, doi: 10.1002/chem.202400717
  7. S. Molina, R. Novella, J. Gomez-Soriano, and M. Olcina-Girona, “Experimental activities on a hydrogen-fueled spark-ignition engine for light-duty applications,” Appl. Sci., vol. 13, no. 21, p. 12055, Nov. 2023, doi: 10.3390/app132112055
  8. J. P. B. Ramirez, D. Halm, J.-C. Grandidier, S. Villalonga, and F. Nony, “700 bar type IV high pressure hydrogen storage vessel burst – Simulation and experimental validation,” Int. J. Hydrogen Energy, vol. 40, no. 41, pp. 13183–13192, Jul. 2015, doi: 10.1016/j.ijhydene.2015.05.126
  9. K. Yuan and Z. Liu, “A structural mechanics analysis on a type IV hydrogen storage tank during refueling and discharging,” Eng. Fail. Anal., vol. 165, p. 108822, Aug. 2024, doi: 10.1016/j.engfailanal.2024.108822
  10. J. Wan, J. Kang, Z. Liu, H. Yan, and Y. Li, “Research on scenario construction and economic analysis for electric-hydrogen coupling,” J. Phys.: Conf. Ser., vol. 2728, no. 1, p. 012075, 2024, doi: 10.1088/1742-6596/2728/1/012075
  11. Tolosa, I., Garciandía, F., Zubiri, F., Zapirain, F., & Esnaola, A. (2010). Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. The International Journal of Advanced Manufacturing Technology, 51, 639-647

Last update:

No citation recorded.

Last update:

No citation recorded.