skip to main content

ANALISIS KEANDALAN KOMPONEN BATTERY PADA MEDIUM EV BUS MENGGUNAKAN METODE RELIABILITY BLOCK DIAGRAM DAN FAULT TREE ANALYSIS

*Muhammad Andhika Anargya Tamzil  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Gunawan Dwi Haryadi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Yusuf Umardani  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Transisi menuju elektrifikasi transportasi publik, khususnya bus listrik, menjadi langkah penting dalam upaya mengurangi emisi gas rumah kaca dan meningkatkan keberlanjutan lingkungan di perkotaan. Penelitian ini menggabungkan tiga metode utama, yaitu Reliability Block Diagram (RBD), Fault Tree Analysis (FTA), dan Risk-Based Inspection (RBI) untuk menganalisis keandalan sistem baterai pada bus listrik medium. RBD digunakan untuk memodelkan keandalan komponen utama dalam Battery Management System (BMS), sementara FTA membantu mengidentifikasi penyebab kegagalan potensial, seperti kecacatan pada baterai. RBI, yang mengutamakan inspeksi berbasis probabilitas kegagalan (PoF), digunakan untuk memprioritaskan komponen yang perlu diperiksa lebih sering. Hasil penelitian menunjukkan bahwa komponen dengan PoF tinggi, seperti fuse dan relay serta sistem pendingin, membutuhkan inspeksi lebih sering untuk mencegah kegagalan kritis. Pendekatan ini membantu mengoptimalkan biaya pemeliharaan, meningkatkan efisiensi operasional, dan mendukung keberlanjutan sistem baterai pada bus listrik.

Fulltext View|Download
Keywords: bus listrik; emisi karbon; fault tree analysis; keandalan; reliability block diagram; risk-based inspection; sistem baterai
  1. Blaabjerg, F., Yang, Y., Yang, D., Wang, X., 2017, "Distributed power-generation systems and protection," Proc. IEEE, vol. 105, no. 7, pp. 1311–1331, Jul
  2. Knappik, G., Schwab, J., 2019, "The advantages of 48-volt vehicle electronics," Veh. Technol., Sep. 2019. [Online]. Available: https://www.mes-insights.com/the-advantages-of-48-voltvehicle-electronics-a-867979/
  3. Kramer, U., Ortloff, F., Stollenwerk, S., 2018, "Defossilizing the Transportation Sector: Options and Requirements for Germany," Frankfurt, Germany: FVV. [Online]. Available: https://www.fvvnet.de/fileadmin/user_upload/medien/materialien/FVV_Future_Fuels_Study_report_Defossilizing_the_transportation_sector_R586_final_v.3_2019-06-14__EN.pdf
  4. Bloomberg, 2020, "Electrical Vehicles Outlook 2020," New York, NY, USA, Bloomberg, 2020
  5. Sui, Y., Zhang, H., Shang, W., Sun, R., Wang, C., Jie, J., 2020, "Mining urban sustainable performance: spatio-temporal emission potential changes of urban transit buses in post-covid-19 future," Applied Energy, vol. 280, p. 115966. https://doi.org/10.1016/j.apenergy.2020.115966
  6. Mihăilescu, S., Praporgescu, G., 2022, "Public transport analysis in the Petroșani basin in the context of the need for sustainable mobility," Matec Web of Conferences, vol. 354, p. 00065. https://doi.org/10.1051/matecconf/202235400065
  7. Varga, B., Mariașiu, F., Miclea, C., Szabo, I., Sirca, A., Vlad, N., 2020, "Direct and indirect environmental aspects of an electric bus fleet under service," Energies, vol. 13, no. 2, p. 336. https://doi.org/10.3390/en13020336
  8. Son, J., Kim, J., Lee, W., Han, S., 2022, "Willingness to pay for the public electric bus in Nepal: a contingent valuation method approach," Sustainability, vol. 14, no. 19, p. 12830. https://doi.org/10.3390/su141912830
  9. Cheng, Y., Wang, W., Ding, Z., He, Z., 2019, "Electric bus fast charging station resource planning considering load aggregation and renewable integration," IET Renewable Power Generation, vol. 13, no. 7, p. 1132-1141. https://doi.org/10.1049/iet-rpg.2018.5863
  10. Haces-Fernandez, F., 2024, "Framework to develop electric school bus vehicle-to-grid (esb v2g) systems supplied with solar energy in the United States," Energies, vol. 17, no. 12, p. 2834. https://doi.org/10.3390/en17122834
  11. Gao, Z., Lin, Z., LaClair, T., Liu, C., Li, J., Birky, A., 2017, "Battery capacity and recharging needs for electric buses in city transit service," Energy, vol. 122, p. 588-600. https://doi.org/10.1016/j.energy.2017.01.101
  12. Liu, Z., Song, Z., He, Y., 2018, "Planning of fast-charging stations for a battery electric bus system under energy consumption uncertainty," Transportation Research Record Journal of the Transportation Research Board, vol. 2672, no. 8, p. 96-107. https://doi.org/10.1177/0361198118772953
  13. Wang, Y., Lu, C., Bi, J., Sai, Q., Qu, X., 2023, "Lifecycle cost optimization for electric bus systems with different charging methods: collaborative optimization of infrastructure procurement and fleet scheduling," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 3, p. 2842-2861. https://doi.org/10.1109/tits.2022.3223028
  14. Chong, U., Yim, S., Barrett, S., Boies, A., 2014, "Air quality and climate impacts of alternative bus technologies in Greater London," Environmental Science & Technology, vol. 48, no. 8, p. 4613-4622. https://doi.org/10.1021/es4055274
  15. Momenitabar, M., Ebrahimi, Z., Mattson, J., Hough, J., 2023, "Designing an electric transit route network utilizing energy storage technology to mitigate annual demand charge," Transportation Research Record Journal of the Transportation Research Board, vol. 2677, no. 8, p. 158-174. https://doi.org/10.1177/03611981231155904
  16. Abdelouahed, A., Berrada, A., Mrabet, R., 2023, "Techno‐economic study for the implementation of electric buses for sustainable urban and interurban transportation," Environmental Progress & Sustainable Energy, vol. 43, no. 1, 2023. https://doi.org/10.1002/ep.14278
  17. Cheng, H., Huang, M., Liu, L., Ru, H., 2023, "Demand response aggregation service strategy for electric buses," p. 62, 2023. https://doi.org/10.1117/12.2685954
  18. Würtz, S., Bogenberger, K., Göhner, U., Rupp, A., 2024, "Towards efficient battery electric bus operations: a novel energy forecasting framework," World Electric Vehicle Journal, vol. 15, no. 1, p. 27. https://doi.org/10.3390/wevj15010027
  19. Zhang, Y., Deng, J., Zhu, K., Tao, Y., Liu, X., Cui, L., 2021, "Location and expansion of electric bus charging stations based on gridded affinity propagation clustering and a sequential expansion rule," Sustainability, vol. 13, no. 16, p. 8957. https://doi.org/10.3390/su13168957
  20. Callou, Gustavo, et al. "An integrated modeling approach to evaluate and optimize data center sustainability, dependability and cost." Energies 7.1 (2014): 238-277
  21. Huang, Y., Qin, G., & Yang, M. (2023). "A risk-based approach to inspection planning for pipelines considering the coupling effect of corrosion and dents." Process Safety and Environmental Protection, 180, 588-600

Last update:

No citation recorded.

Last update:

No citation recorded.