skip to main content

ANALISIS TEGANGAN DAN FAKTOR KEAMANAN TANGKI HIDROGEN TIPE I BERBAHAN AISI 4130 MENGGUNAKAN METODE ELEMEN HINGGA

*Thoriq Muhammad Almujaddid  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sulistyo Sulistyo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Penggunaan hidrogen sebagai sumber energi alternatif yang bersih mendorong pentingnya teknologi penyimpanan bertekanan tinggi yang aman dan andal. Tangki hidrogen tipe I berbahan AISI 4130 banyak digunakan karena kekuatan mekaniknya yang tinggi, namun rentan terhadap fenomena hydrogen embrittlement (HE). Penelitian ini bertujuan menganalisis distribusi tegangan dan faktor keamanan tangki hidrogen tipe I menggunakan metode elemen hingga (FEM) pada tiga variasi tekanan internal: 30 MPa, 40 MPa, dan 50 MPa. Simulasi dilakukan menggunakan perangkat lunak berbasis FEM untuk memperoleh tegangan ekuivalen (von-Mises) dan safety factor. Hasil menunjukkan bahwa peningkatan tekanan internal menyebabkan peningkatan tegangan dan penurunan faktor keamanan. Meskipun demikian, semua variasi masih berada dalam batas aman. Studi ini memberikan kontribusi dalam memahami perilaku struktural tangki tipe I terhadap tekanan tinggi serta menjadi dasar rekomendasi desain yang lebih aman.

Fulltext View|Download
Keywords: aisi 4130; faktor keamanan; fem; hidrogen; tangki tipe i; tegangan von-mises
  1. M. Taylor et al., “International Journal of Hydrogen Energy Offshore renewable hydrogen potential in Australia : A techno-economic and legal review,” Int. J. Hydrogen Energy, vol. 152, no. November 2024, p. 149923, 2025, doi: 10.1016/j.ijhydene.2025.06.113
  2. Y. Sun, W. Ding, M. Li, Y. Li, X. Lu, and Z. Gan, “Investigations of hydrogen diffusion and embrittlement behavior in tempered high-strength carbon steel AISI 4130,” Int. J. Press. Vessel. Pip., vol. 214, no. July 2024, p. 105447, 2025, doi: 10.1016/j.ijpvp.2025.105447
  3. G. A. Martiniano, J. E. S. Leal, R. F. da Silva Alvarenga, W. W. Bose Filho, M. T. Piza Paes, and S. D. Franco, “Effect of mechanical strength on the hydrogen embrittlement susceptibility and fracture behavior of a modified AISI 4130 steel,” Int. J. Hydrogen Energy, vol. 136, no. April 2024, pp. 765–776, 2024, doi: 10.1016/j.ijhydene.2024.04.167
  4. X. Wang et al., “Challenges and opportunities in hydrogen storage and transportation: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 219, no. December 2024, p. 115881, 2025, doi: 10.1016/j.rser.2025.115881
  5. U. B. Beak, J. Park, K. O. Bae, and T. T. Nguyen, “Understanding cracking behavior in type I hydrogen storage vessels and critical crack size assessment,” Int. J. Hydrogen Energy, vol. 101, no. December 2024, pp. 1054–1069, 2025, doi: 10.1016/j.ijhydene.2024.12.478
  6. M. Ayvaz, S. İ. Ayvaz, and İ. Aydin, “A novel method for determining effects of fire damage on the safety of the Type I pressure hydrogen storage tanks,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20271–20283, 2018, doi: 10.1016/j.ijhydene.2018.05.092
  7. E. Cordioli, J. de Maigret, M. Testi, and L. Crema, “Green hydrogen in the Alps: Mapping local stakeholders perspectives and identifying opportunities for decarbonization,” Energy Reports, vol. 14, no. May, pp. 128–140, 2025, doi: 10.1016/j.egyr.2025.06.001
  8. M. Hamdy and M. A. Nemitallah, “International Journal of Hydrogen Energy Optimizing coke generation / gasification of in-situ combustion gasification process of oil for enhanced in-well hydrogen production,” Int. J. Hydrogen Energy, vol. 149, no. February, p. 150098, 2025, doi: 10.1016/j.ijhydene.2025.150098
  9. A. Díaz, I. I. Cuesta, and J. M. Alegre, “A methodology for the numerical assessment of autofrettage influence on hydrogen content near a notch in a 4130 steel pressure vessel,” Theor. Appl. Fract. Mech., vol. 92, no. July, pp. 205–213, 2017, doi: 10.1016/j.tafmec.2017.07.024
  10. C. Pisarciuc, I. Dan, and R. Cioară, “The Influence of Mesh Density on the Results Obtained by Finite Element Analysis of Complex Bodies,” Materials (Basel)., vol. 16, no. 7, p. 2555, 2023, doi: 10.3390/ma16072555
  11. N. Fatchurrohman and S. T. Chia, “Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: Simulation approach,” IOP Conf. Ser. Mater. Sci. Eng., vol. 257, no. 1, 2017, doi: 10.1088/1757-899X/257/1/012060
  12. R. Reda, S. Ataya, and A. Ashraf, “Finite Element Modeling of Different Types of Hydrogen Pressure Vessels Under Extreme Conditions for Space Applications,” Processes, vol. 13, no. 5, 2025, doi: 10.3390/pr13051429
  13. Y. Jiao, Y. Wang, J. Li, and X. Liu, “Finite Element Analysis and Improved Evaluation of Mechanical Response in Large Oil Storage Tanks Subjected to Non-Uniform Foundation Settlement,” Processes, vol. 12, no. 12, 2024, doi: 10.3390/pr12122838
  14. R. Reda, M. Khamis, A. E. Ragab, A. Elsayed, and A. M. Negm, “Numerical analysis of the impact of winding angles on the mechanical performance of filament wound type 4 composite pressure vessels for compressed hydrogen gas storage,” Heliyon, vol. 10, no. 13, p. e33796, 2024, doi: 10.1016/j.heliyon.2024.e33796
  15. K. Hazizi and M. Ghaleeh, “Design and Analysis of a Typical Vertical Pressure Vessel Using ASME Code and FEA Technique,” Designs, vol. 7, no. 3, 2023, doi: 10.3390/designs7030078

Last update:

No citation recorded.

Last update:

No citation recorded.