skip to main content

PENGARUH TERMAL TERHADAP AKURASI HASIL NUMERIK: STUDI KASUS PADA TANGKI HIDROGEN BERTEKANAN TINGGI

*Jonathan Pulung Kudadiri  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Sulistyo Sulistyo  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

Manajemen termal pada tangki hidrogen tekanan tinggi tipe 1 sangat vital untuk memastikan keamanan dan efisiensi dalam operasi, terutama dalam kendaraan sel bahan bakar hidrogen dan sistem penyimpanan energi. Seiring dengan kemajuan teknologi penyimpanan hidrogen, pemahaman terhadap dinamika termal selama proses pengisian dan penyimpanan menjadi semakin penting. Tangki hidrogen bertekanan tinggi yang biasanya terbuat dari baja, dirancang untuk menahan tekanan hingga 700 bar. Namun, proses pengisian dapat menyebabkan peningkatan suhu yang signifikan akibat kompresi adiabatik yang berpotensi mengurangi integritas struktural tangki. Stres termal akibat variasi suhu dapat memengaruhi umur pakai dan keamanan tangki ini. Ekspansi termal di bawah kondisi tekanan tinggi dapat menyebabkan konsentrasi tegangan. Teknik pemodelan canggih seperti analisis elemen hingga (Finite Element Analysis/FEA) digunakan untuk mensimulasikan perilaku termal, memprediksi distribusi suhu, dan mengidentifikasi titik-titik kegagalan potensial. Penerapan bahan dan strategi isolasi termal dapat mengurangi dampak negatif, sehingga meningkatkan keamanan dan efisiensi. Studi ini menyajikan pendekatan baru dengan mengintegrasikan pemodelan termal lanjutan dan modul kontrol ke dalam desain tangki, serta mengembangkan modul kontrol termal waktu nyata untuk memprediksi, memantau, dan mengatur respons termal selama operasi kritis. Analisis komparatif dari hasil simulasi menunjukkan bahwa suhu internal yang rendah secara signifikan meningkatkan regangan dan tegangan equivalent Von Misses, menekankan pentingnya penggunaan material yang kuat dan tahan terhadap stres termal dan tekanan ekstrem.

Fulltext View|Download
Keywords: finite element analysis; tangki tekanan tinggi; tegangan thermal
  1. Molkov V, Dadashzadeh M, Makarov D. Physical model of onboard hydrogen storage tank thermal behaviour during fuelling. Int J Hydrogen Energy . 2019;44(8):4374–84. https://doi.org/10.1016/j.ijhydene.2018.12.115
  2. Olmos F, Manousiouthakis VI. Hydrogen car fill-up process modeling and simulation. Int J Hydrogen Energy . 2013;38(8):3401–18. http://dx.doi.org/10.1016/j.ijhydene.2012.12.064
  3. Li JQ, Li JC, Park K, Jang SJ, Kwon JT. An analysis on the compressed hydrogen storage system for the fast-filling process of hydrogen gas at the pressure of 82 mpa. Energies. 2021;14(9)
  4. Yatsenko EA, Goltsman BM, Izvarin AI, Novikov Y V. The problems of protection and heat insulation of steel tanks which are used in hydrogen power engineerings. CIS Iron Steel Rev. 2023;25:97–101
  5. Gomez A, Smith H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerosp Sci Technol . 2019;95:105438. https://doi.org/10.1016/j.ast.2019.105438
  6. Prieto C, Blindu A, Cabeza LF, Valverde J, García G. Molten Salts Tanks Thermal Energy Storage: Aspects to Consider during Design. Energies. 2024;17(1)
  7. Werlink RW, Fesmire JE, Sass JP. Vibration considerations for cryogenic tanks using glass bubbles insulation. AIP Conf Proc. 2012;1434(57):55–65
  8. Tapeinos IG, Koussios S, Groves RM. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage. Int J Hydrogen Energy . 2016;41(5):3676–88. http://dx.doi.org/10.1016/j.ijhydene.2015.10.104
  9. Deng S, Li F, Luo H, Yang T, Ye F, Chahine R, et al. Lumped Parameter Modeling of SAE J2601 Hydrogen Fueling Tests. Sustain. 2023;15(2)
  10. Johnson T, Bozinoski R, Ye J, Sartor G, Zheng J, Yang J. Thermal model development and validation for rapid filling of high pressure hydrogen tanks. Int J Hydrogen Energy . 2015;40(31):9803–14. http://dx.doi.org/10.1016/j.ijhydene.2015.05.157
  11. Kassemi M, Panzarella CH. Ventless pressure control of two-phase propellant tanks in microgravity. Ann N Y Acad Sci. 2004;1027:511–28
  12. Monde M, Kosaka M. Understanding of Thermal Characteristics of Fueling Hydrogen High Pressure Tanks and Governing Parameters. SAE Int J Altern Powertrains. 2013;2(1):61–7
  13. GEZGİNCİ V, BOĞA C, SEYEDZAVVAR M. Finite Element Analyses of Stresses Developed in Oil Separator Composite Tank Used in Screw Type Compressor Systems. Bitlis Eren Üniversitesi Fen Bilim Derg. 2022;11(4):1093–101
  14. Yuan K, Pan H, Liu Z, Andersson M. Numerical Modeling for Rapid Charging of Hydrogen Gas Vessel in Fuel Cell Vehicle. Processes. 2023;11(2)
  15. LI JQ, Myoung NS, Kwon JT, Jang SJ, Lee T, Lee YH. A theoretical analysis of temperature rise of hydrogen in high-pressure storage cylinder during fast filling process. Adv Mech Eng. 2020;12(12):1–10
  16. Li JQ, Li JC, Kwon JT, Shang C. The effect of internal pressure change on the temperature rise and the amount of filling hydrogen of high pressure storage tank. Adv Mech Eng. 2022;14(8):1–10
  17. Matsunaga T, Kon M, Washio K, Shinozawa T, Ishikiriyama M. TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int J Hydrogen Energy . 2009;34(3):1458–62. http://dx.doi.org/10.1016/j.ijhydene.2008.11.061
  18. Jeong SJ, Lee SJ, Moon SJ. CFD Thermo-Hydraulic Evaluation of a Liquid Hydrogen Storage Tank with Different Insulation Thickness in a Small-Scale Hydrogen Liquefier. Fluids. 2023;8(9)
  19. Endo N, Matsumura K, Kawakami Y, Ishida M, Maeda T. Operation of metal hydride hydrogen storage systems for hydrogen compression using solar thermal energy. J Int Counc Electr Eng . 2016;6(1):65–71. http://dx.doi.org/10.1080/22348972.2016.1173779
  20. Li D, Hang J, Li Y, Dong S. Fuel flowrate control for aeroengine and fuel thermal management for airborne system of aircraft—an overview. Appl Sci. 2022;12(1)
  21. Mer S, Thibault JP, Corre C. Active insulation technique applied to the experimental analysis of a thermodynamic control system for cryogenic propellant storage. J Therm Sci Eng Appl. 2016;8(2):1–8
  22. Xie F, Song W, Chen Z, Lv L. The analysis for mechanical response of 16MnR steel under single-tank pool fire. Appl Mech Mater. 2013;271(PART 1):277–82
  23. Tashlykova-Bushkevich II, Itoh G, Shepelevich VG, Shikagawa T. Kinetics of hydrogen desorption from rapidly solidified Al-Cr alloys. Mater Trans. 2011;52(5):895–9
  24. Yang H, Liu L, Chen H, Wang L, Qin T. Investigation on creep age forming of AA2219 stiffened structures. MATEC Web Conf. 2015;21
  25. LEVENT ÜNLÜSOY. Structural Design and Analysis of the Mission Adaptive Wings of Wings of an Unmanned Aerial Vehicle a Thesis Submitted To of By. 2014;(February 2010)
  26. Creton N, Dejardin S, Grysakowski B, Optasanu V, Montésin T. A mechano-chemical coupling for hydrogen diffusion in metals based on a thermodynamic approach. Defect Diffus Forum. 2014;353:286–91
  27. Sonon B, François B, Massart TJ. An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech. 2015;56(2):221–42
  28. Ali Z, Tyacke J, Watson R, Tucker PG, Shahpar S. Efficient preprocessing of complex geometries for CFD simulations. Int J Comut Fluid Dyn . 2019;33(3):98–114. https://doi.org/10618562.2019.1606421

Last update:

No citation recorded.

Last update:

No citation recorded.