skip to main content

ANALISIS PENGARUH MATERIAL PADA KOMPONEN ACETUBULAR CUP TERHADAP DUAL MOBILITY HIP JOINT PROSTHESIS DENGAN PERTIMBANGAN GAIT CYCLE DENGAN METODE FINITE ELEMENT METHOD (FEM)

*Frans Richard Binsar  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Muchammad Muchammad  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Pemilihan material pada komponen acetabular cup memiliki peranan krusial dalam menentukan performa mekanis dan umur pakai dari prostesis sendi panggul tipe dual mobility. Penelitian ini bertujuan untuk menganalisis pengaruh variasi material acetabular cup terhadap distribusi tegangan dan deformasi selama fase gait cycle menggunakan metode elemen hingga (Finite Element Method/FEM) melalui perangkat lunak ANSYS 2023 R2. Simulasi dilakukan secara statik pada enam fase gait cycle (0%, 20%, 35%, 50%, 65%, dan 100%) terhadap lima jenis material: SS 316L, Titanium, CoCr, 30 CF/PEEK, dan UHMWPE. Hasil simulasi menunjukkan bahwa material CoCr menghasilkan tegangan Von-Mises tertinggi sebesar 28 MPa pada fase 35% gait cycle dan tegangan Tresca maksimum sebesar 16,5 MPa pada fase 60%. Sebaliknya, UHMWPE menunjukkan tegangan Von-Mises dan Tresca terendah, yaitu 4,3 MPa dan 3,1 MPa, mencerminkan sifat elastis namun berpotensi aus dalam jangka panjang. Deformasi terbesar dicatat pada material Titanium sebesar 0,105 mm, sedangkan 30 CF/PEEK dan UHMWPE menunjukkan deformasi paling rendah masing-masing sebesar 0,032 mm dan 0,028 mm. Material 30 CF/PEEK menampilkan respons mekanis paling seimbang, dengan tegangan Von-Mises dan Tresca maksimum 12,4 MPa dan deformasi yang minimal, sehingga berpotensi menjadi pilihan unggulan untuk aplikasi acetabular cup. Temuan ini menegaskan pentingnya pemilihan material yang tepat dalam desain implan, khususnya untuk mencapai keseimbangan antara kekuatan struktur, ketahanan deformasi, dan performa terhadap keausan dalam kondisi pembebanan fisiologis.
Fulltext View|Download
Keywords: Acetubular Cup, Dual Mobility Hip Joint Prosthesis, FEM, Giat Cycle
  1. S. Standring, Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed. Elsevier Health Sciences, 2016
  2. A. Kumar and others, “Recent Advances in Hip Joint Replacement Materials: A Review,” Mater. Today Proc., vol. 26, pp. 2673–2675, 2020
  3. D. Pivec and others, “Hip Arthroplasty,” J. Bone Joint Surg. Am., vol. 94, no. 14, pp. 1359–1370, 2012
  4. I. D. Learmonth and others, “The operation of the century: total hip replacement,” Lancet, vol. 370, no. 9597, pp. 1508–1519, 2007
  5. G. Bergmann and others, “Hip contact forces and gait patterns from routine activities,” J. Biomech., vol. 26, no. 8, pp. 969–990, 1993
  6. B. Heinlein and others, “Standardized Loads Acting in Hip Implants,” J. Biomech., vol. 42, no. 4, pp. 540–549, 2009
  7. L. Cristofolini and others, “Comparative in-vitro study of standard and dual mobility hip implants,” Clin. Biomech., vol. 22, no. 3, pp. 291–297, 2007
  8. M. Budzynski, “Corrosion resistance of AISI 316L stainless steel in simulated body fluids,” Mater. Sci. Eng. C, vol. 26, no. 8, pp. 1537–1543, 2006
  9. M. F. Semlitsch and others, “Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy,” Biomaterials, vol. 13, no. 11, pp. 781–788, 1992
  10. G. Kandemir, S. Smith, and T. J. Joyce, “Wear behaviour of CFR PEEK articulated against CoCr under varying contact stresses,” J. Mech. Behav. Biomed. Mater., vol. 97, pp. 117–125, 2019
  11. L. Gimenis de Moura, E. Alberto Fancello, E. da Rosa, C. Rodrigo de Mello Roesler, C. Muniz da Silva de Almeida, and M. Marie Maru de Morais, “Influence of plane-strain compression on the microstructure and tribological behavior of GUR 1050 UHMWPE,” J. Mech. Behav. Biomed. Mater., vol. 142, no. March, p. 105816, 2023, doi: 10.1016/j.jmbbm.2023.105816
  12. I. De Martino and others, “The Modern Dual-Mobility Cup: First Experience and Lessons Learned,” Orthop. Clin. North Am., vol. 45, no. 1, pp. 1–8, 2014
  13. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 7th ed. Butterworth-Heinemann, 2013
  14. M. Viceconti and others, “Biomechanics modeling of skeletal structures,” J. Biomech., vol. 38, no. 7, pp. 1459–1471, 2005
  15. M. Tauviqirrahman et al., “Analysis of contact pressure in a 3D model of dual-mobility hip joint prosthesis under a gait cycle,” Sci. Rep., vol. 13, no. 1, pp. 1–11, 2023, doi: 10.1038/s41598-023-30725-6
  16. J. P. Paul, “Paper 8: Forces Transmitted by Joints in the Human Body:,” http://dx.doi.org/10.1243/PIME_CONF_1966_181_201_02, vol. 181, no. 10, pp. 8–15, Feb. 2006, doi: 10.1243/PIME_CONF_1966_181_201_02

Last update:

No citation recorded.

Last update:

No citation recorded.