skip to main content

PENGARUH VARIASI TEKANAN TERHADAP PENYEMPITAN PEMBULUH DARAH DAN IMPLIKASINYA PADA PEMBENTUKAN ULKUS DEKUBITUS

*Bagus Putra Mahardika  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Jamari Jamari  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tri Indah Winarni  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Luka tekan, atau luka baring, merupakan masalah yang signifikan bagi pasien yang terbaring di tempat tidur, khususnya di area dengan tekanan eksternal yang berkepanjangan seperti daerah gluteal. Interaksi gaya mekanis, gesekan, dan tegangan geser di area ini dapat menyebabkan konstriksi vaskular, mengganggu perfusi kulit, dan berkontribusi terhadap perkembangan ulkus. Dalam studi biotribologi komputasional ini , kami menyelidiki bagaimana tekanan kulit sakral memengaruhi konstriksi pembuluh darah mikro dan timbulnya luka tekan di daerah gluteal. Dengan menggunakan simulasi dua dimensi pembuluh darah mikro melintang, kami memeriksa efek tribologi gaya mekanis eksternal pada deformasi vaskular dan aliran darah mikro. Hasil kami menunjukkan korelasi yang kuat antara peningkatan tekanan kulit gluteal dan konstriksi pembuluh darah mikro, yang menyebabkan peningkatan tekanan darah lokal dan iskemia. Temuan ini menawarkan wawasan penting tentang bagaimana tekanan mekanis, gaya geser, dan gesekan jaringan pada tonjolan tulang  mengganggu fungsi mikrovaskular, yang mengakibatkan kerusakan jaringan. Studi ini menggarisbawahi pentingnya mengintegrasikan prinsip biotribologi ke dalam strategi pencegahan untuk penanganan ulkus dekubitus, khususnya di area dengan beban mekanis tinggi.
Fulltext View|Download
Keywords: biotribologi; metode elemen hingga; rongga cairan; tekanan darah; ulkus dekubitus
  1. Phoong KY, Hardacre CL, Hill JE. Advancing pressure ulcer prevention: evaluating the impact of patient and lay carer education. Br J Community Nurs [Internet]. 2023;28:S8–12. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85178249886&doi=10.12968%2Fbjcn.2023.28.Sup12.S8&partnerID=40&md5=4a313d9e8d488f10d83 93024ded36c64
  2. Headlam J, Illsley A. Pressure ulcers: An overview. Br J Hosp Med. 2020;81(12):1–9
  3. Ho C, Cheung A, Bogie K. Pressure Ulcers. In: Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation [Internet]. 2018. p. 849–59. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123659676&doi=10.1016%2FB978-0-323- 54947-9.00149-8&partnerID=40&md5=f34b4898f37c8279ef91a4c71d1ac274
  4. Trebbi A, Fougeron N, Payan Y. Definition and evaluation of a finite element model of the human heel for diabetic foot ulcer prevention under shearing loads. Med Eng Phys [Internet]. 2023;118(July):104022. Available from: https://doi.org/10.1016/j.medengphy.2023.104022
  5. Mervis JS, Phillips TJ. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. J Am Acad Dermatol [Internet]. 2019;81(4):881–90. Available from: https://doi.org/10.1016/j.jaad.2018.12.069
  6. Yamada H, Inoue Y, Shimokawa Y, Sakata K. Skin stiffness determined from occlusion of a horizontally running microvessel in response to skin surface pressure : a finite element study of sacral pressure ulcers. Med Biol Eng Comput. 2017;55(1):79–88
  7. Lustig M, Gefen A. Computational studies of the biomechanical efficacy of a minimum tissue deformation mattress in protecting from sacral pressure ulcers in a supine position. Int Wound J. 2022;19(5):1111–20
  8. Ammarullah MI, Hidayat T, Lamura MDP, Jamari J. Relationship between deformation and running-in wear on hard- on-hard bearings from metal, ceramic, and diamond materials for total hip prosthesis. J Tribol. 2023;38:69–81
  9. Lamura M, Ammarullah MI, Maula MI, Hidayat T, Bayuseno AP, Jamari J. The Effect of Load, Diameter Ratio, and Friction Coefficient on Residual Stress in a Hemispherical Contact for Application in Biomedical Industry. J Mater Eng Perform. 2024;1–9
  10. Zeevi T, Levy A, Brauner N, Gefen A. Effects of ambient conditions on the risk of pressure injuries in bedridden patients—multi-physics modelling of microclimate. Int Wound J. 2018;15(3):402–16
  11. Arumugam S, Ranganathan R. Development of novel customized pressure distribution surface for reduction of pressure ulcers using additive manufacturing technology. Rapid Prototyp J. 2022;28(7):1407–21
  12. Yu C, Sacris JM, Gai Y, Lei CH. 3D finite-element modeling of air-cell-based cushions and buttock tissues during prolonged sitting. Comput Biol Med [Internet]. 2022;142(October 2021):105229. Available from: https://doi.org/10.1016/j.compbiomed.2022.105229
  13. Levy A, Kopplin K, Gefen A. Simulations of skin and subcutaneous tissue loading in the buttocks while regaining weight-bearing after a push-up in wheelchair users. 2013;28:436–47
  14. Thomas DR. The Prevention and Management of Pressure Ulcers. In: Pathy’s Principles and Practice of Geriatric Medicine: Fifth Edition [Internet]. 2012. p. 1531–43. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84886230118&doi=10.1002%2F9781119952930.ch126&partnerID=40&md5=f70933389123c129e51a 34d3325b18ca
  15. Sree VD, Rausch MK, Tepole AB. Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation. Biomech Model Mechanobiol [Internet]. 2019;18(6):1947–64. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067824329&doi=10.1007%2Fs10237-019-01187-5&partnerID=40&md5=b724fc0566a3d6bffa7ccc06dc885443
  16. Reynolds SC, Chow AW. Infected pressure ulcers. In: Infection Management for Geriatrics in Long-Term Care Facilities, Second Edition [Internet]. 2006. p. 251–75. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85014100024&partnerID=40&md5=778fdc1c54c204a9e92b555670602bef
  17. Shilo M, Gefen A. Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations. Comput Methods Biomech Biomed Engin. 2012;15(1):59–71
  18. Burton AC. On the physical equilibrium of small blood vessels. Am J Physiol Content.1951;164(2):319-29
  19. Issakhov A, Sabyrkulova A, Abylkassymova A. Numerical modeling of the fluid-structure interaction during blood flow in a flexible stenotic aorta. 2024;158(August)
  20. Mang T, Bobzin K, Bartels T. Industrial Tribology. Wiley; 2010. 666 p
  21. Hoogendoorn I, Reenalda J, Koopman BFJM, Rietman JS. The effect of pressure and shear on tissue viability of human skin in relation to the development of pressure ulcers : a systematic review. J Tissue Viability [Internet]. 2017;26(3):157–71. Available from: http://dx.doi.org/10.1016/j.jtv.2017.04.003
  22. Fougeron N, Connesson N, Chagnon G, Alonso T, Pasquinet L, Bahuon M, et al. New pressure ulcers

Last update:

No citation recorded.

Last update:

No citation recorded.