skip to main content

STUDI NUMERIK PENGARUH ASPEK RASIO DARI PERFORATED CONCAVE DELTA WINGLET TERHADAP PERFORMA TERMAL-HIDROLIK ALIRAN UDARA MELEWATI TUBE DI DALAM SALURAN

*Mochamad Fahri Fadlu Robbi  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Bambang Yunianto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Syaiful Syaiful  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Aspek rasio merupakan faktor penting dalam meningkatkan perpindahan panas dengan menggunakan vortex generator. Oleh karena itu, penelitian ini berkonsentrasi pada meningkatkan laju perpindahan panas dari permukaan pipa ke aliran dengan menggunakan vortex generator delta winglet concave yang perforated untuk berbagai aspek rasio. Dipasang di dalam saluran persegi empat, generator vortex delta winglet concave dengan dan tanpa lubang memiliki sudut serang 15o dan berbagai aspek rasio dari 1 hingga 3 dengan interval 0,5. Studi numerik ini dilakukan dengan jumlah pasang vortex generator satu, dua, dan tiga. Kecepatan aliran udara di dalam saluran adalah 0,4 hingga 2 m/det, dengan 0,2 m/det di luar pipa panas. Hasil penelitian menunjukkan bahwa pada perforated concave delta winglet (PCDW) tiga pasang dengan aspek rasio 3 menunjukkan peningkatan laju perpindahan panas  54,8% lebih tinggi daripada yang dari baseline dan memperlihatkan penurunan pressure drop sebesar 48% lebih rendah dari concave delta winglet (CDW) tiga pasang dengan aspek rasio yang sama.
Fulltext View|Download
Keywords: laju perpindahan panas; perforated concave delta winglet; pressure drop; vortex generator
  1. Oh, Y. and Kim, K., 2021. Effects of position and geometry of curved vortex generators on fin-tube heat-exchanger performance characteristics. Applied Thermal Engineering, 189, p.116736
  2. Qian, Z., Wang, Q. and Cheng, J., 2018. Analysis of heat and resistance performance of plate fin-and-tube heat exchanger with rectangle-winglet vortex generator. International Journal of Heat and Mass Transfer, 124, pp.1198-1211
  3. Gupta, A., Roy, A., Gupta, S. and Gupta, M., 2020. Numerical investigation towards implementation of punched winglet as vortex generator for performance improvement of a fin-and-tube heat exchanger. International Journal of Heat and Mass Transfer, 149, p.119171
  4. Naik, H. and Tiwari, S., 2021. Numerical investigations on fluid flow and heat transfer characteristics of different locations of winglets mounted in fin-tube heat exchangers. Thermal Science and Engineering Progress, 22, p.100795
  5. Sun, Z., Zhang, K., Li, W., Chen, Q., & Zheng, N. (2020). Investigations of the turbulent thermal-hydraulic performance in circular heat exchanger tubes with multiple rectangular winglet vortex generators. Applied Thermal Engineering, 168, 114838
  6. Syaiful, Kusuma, N., Muchammad, Wulandari, R., Sinaga, N., Siswantara, A., Bae, M. W. (2020). Numerical investigation of heat transfer and pressure loss of flow through a heated plate mounted by perforated concave rectangular winglet vortex generators in a channel. In AIP Conference Proceedings (Vol. 2227, No. 1, p. 020040). AIP Publishing LLC
  7. Kashyap, U., Das, K. and Debnath, B.K., 2018. Effect of surface modification of a rectangular vortex generator on heat transfer rate from a surface to fluid. International Journal of Thermal Sciences, 127, pp.61-78
  8. Song, K., Tagawa, T., Chen, Z. and Zhang, Q., 2019. Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow. International Journal of Thermal Sciences, 137, pp.215-228
  9. Xie, J. and Lee, H.M., 2020. Flow and heat transfer performances of directly printed curved-rectangular vortex generators in a compact fin-tube heat exchanger. Applied Thermal Engineering, 180, p.115830
  10. Bagheri, H., Mirjalily, S.A.A., Oloomi, S.A.A. and Salimpour, M.R., 2021. Effects of micro-vortex generators on shock wave structure in a low aspect ratio duct, numerical investigation. Acta Astronautica, 178, pp.616-624
  11. Shi, W., Liu, T., Song, K., Zhang, Q., Hu, W. and Wang, L., 2021. The optimal longitudinal location of curved winglets for better thermal performance of a finned-tube heat exchanger. International Journal of Thermal Sciences, 167, p.107035
  12. Syaiful, et al., 2019. Numerical Analysis of Heat and Fluid Flow Characteristics of Airflow Inside Rectangular Channel with Presence of Perforated Concave Delta Winglet Vortex Generators. International Journal of Heat and Technology, 37( https://doi.org/10.18280/ijht.370415), pp. 1059-1070
  13. Syaiful, S., Syarif, A., Yunianto, B. and Sinaga, N., 2020. Performa Termal dan Hidrolik Aliran Udara Melalui Vortex Generator Berlubang Tipe Concave Rectangular Winglet di dalam Saluran Persegiempat: Studi Eksperimen. Jurnal Rekayasa Mesin, 11(2), pp.233-245
  14. S. Whitaker, “Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles,” AIChE J., vol. 18, no. 2, pp. 361–371, Mar. 1972, doi: 10.1002/aic.690180219
  15. Effendi, Y., Prayogo, A., Syaiful, Djaeni, M., Yohana, E. (2021). Effect of perforated concave delta winglet vortex generators on heat transfer and flow resistance through the heated tubes in the channel. Experimental Heat Transfer, 1-24

Last update:

No citation recorded.

Last update:

No citation recorded.