skip to main content

ANALISIS PERPINDAHAN PANAS DAN MASSA PARTIKEL PADA PENGERINGAN SEMPROT BERTEMPERATUR RENDAH DENGAN MENGGUNAKAN KOMBINASI SUDUT SEMPROT

*Bisri Oktavia Usda  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Eflita Yohana  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Mohammad Tauviqirrahman  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract
Meningkatnya produksi teh di Indonesia harus diikuti dengan peningkatan kualitas dari teh tersebut. Proses pengolahan teh harus dilakukan secara baik guna menjaga kualitas teh. Metode spray drying merupakan salah satu metode pengolahan teh yang beroperasi dengan perpindahan panas konveksi. Spray drying merupakan operasi pengolahan untuk mengubah bentuk cairan menjadi bentuk partikel kering dengan media semprot pengering panas. Pada penelitian ini dilakukan simulasi menggunakan bantuan CFD (Computational Fluid Dynamics) untuk mengetahui pengaruh kombinasi sudut semprot dan variasi udara panas masuk pada ruang pengering terhadap distribusi H2O mass fraction, H2O (l) mass fraction, dan temperatur yang terjadi di dalam ruang pengering. Pada penelitian kali ini menggunakan variasi sudut semprot 20°, 25°, 32°, 41° dengan udara panas masuk yaitu 70°C. Karakteristik perpndahan panas dan massa dianalis dari parameter hasil berupa temperature, fraksi massa air, dan fraksi massa uap air. Dari hasil penelitian diketahui bahwa variasi sudut semprot 41° memiliki nilai perpindahan panas dan massa yang paling baik, ditunjukkan oleh penurunan temperatur paling besar yaitu 38,9°C, sedangkan variasi sudut semprot 20° menjadi variasi dengan perpindahan massa yang paling rendah dengan penurunan temperatur udara panas 28,9°C.
Fulltext View|Download
Keywords: cfd; pengering semprot; sudut semprot; temperatur udara panas
  1. M. Basorudin, A. Rizqi, S. Murdaningrum, and W. Maharani, “Kajian Persebaran Komoditas Teh: Pengembangan Kawasan Perkebunan Teh Di Provinsi Jawa Barat,” J. Sos. Ekon. Pertan., vol. 15, no. 3, p. 205, 2019, doi: 10.20956/jsep.v15i3.6792
  2. A. A. Susanti and Akbar, Buku Outlook Komoditas Perkebunan Teh. 2019. [Online]. Available: http://pusdatin.setjen.pertanian.go.id/
  3. I. R. Dewi Anjarsari, “Katekin teh Indonesia : prospek dan manfaatnya,” Kultivasi, vol. 15, no. 2, pp. 99–106, 2016, doi: 10.24198/kultivasi.v15i2.11871
  4. L. Trimo and S. Hidayat, “Agroindustri Berbasis Teh Rakyat Sebagai Usaha Meningkatkan Kesejahteraan Petani Teh,” Agricore J. Agribisnis dan Sos. Ekon. Pertan. Unpad, vol. 4, no. 1, 2019, doi: 10.24198/agricore.v4i1.23209
  5. Kementerian Pertanian, “Perkebunan Teh Menoreh kedatangan Guru Besar Korsel dan Kamboja,” Kementeri. Pertan. Republik Indones., no. 3, 2021, [Online]. Available: https://www.pertanian.go.id/home/?show=news&act=view&id=3531
  6. K. Samborska, R. Bonikowski, D. Kalemba, A. Barańska, A. Jedlińska, and A. Edris, “Volatile aroma compounds of sugarcane molasses as affected by spray drying at low and high temperature,” Lwt, vol. 145, no. March, 2021, doi: 10.1016/j.lwt.2021.111288
  7. C. Anandharamakrishnan and S. Padma Ishwarya, “Spray Drying Techniques for Food Ingredient Encapsulation,” Spray Dry. Tech. Food Ingred. Encapsulation, no. July, pp. 1–296, 2015, doi: 10.1002/9781118863985
  8. S. Okada, S. Ohsaki, H. Nakamura, and S. Watano, “Estimation of evaporation rate of water droplet group in spray drying process,” Chem. Eng. Sci., vol. 227, 2020, doi: 10.1016/j.ces.2020.115938
  9. F. de Melo Ramos, J. Ubbink, V. Silveira Júnior, and A. S. Prata, “Drying of Maltodextrin solution in a vacuum spray dryer,” Chem. Eng. Res. Des., vol. 146, pp. 78–86, 2019, doi: 10.1016/j.cherd.2019.03.036
  10. I. M. Cotabarren, D. Bertín, M. Razuc, M. V. Ramírez-Rigo, and J. Piña, “Modelling of the spray drying process for particle design,” Chem. Eng. Res. Des., vol. 132, pp. 1091–1104, 2018, doi: 10.1016/j.cherd.2018.01.012
  11. M. Mezhericher, A. Levy, and I. Borde, “Three-Dimensional Spray-Drying Model Based on Comprehensive Formulation of Drying Kinetics,” Dry. Technol., vol. 30, no. 11–12, pp. 1256–1273, 2012, doi: 10.1080/07373937.2012.686136
  12. M. Jaskulski, P. Wawrzyniak, and I. Zbiciński, “CFD model of particle agglomeration in spray drying,” Dry. Technol., vol. 33, no. 15–16, pp. 1971–1980, 2015, doi: 10.1080/07373937.2015.1081605
  13. M. Jaskulski, P. Wawrzyniak, and I. Zbiciński, “CFD simulations of droplet and particle agglomeration in an industrial counter-current spray dryer,” Adv. Powder Technol., vol. 29, no. 7, pp. 1724–1733, 2018, doi: 10.1016/j.apt.2018.04.007
  14. B. A. Olufemi and M. K. Ayomoh, “Parametric optimization and statistical evaluation of a spray dryer for the evaporation of caustic soda solution,” Heliyon, vol. 5, no. 7, p. e02026, 2019, doi: 10.1016/j.heliyon.2019.e02026
  15. H. Jubaer et al., “Computationally inexpensive simulation of agglomeration in spray drying while preserving structure related information using CFD,” Powder Technol., vol. 372, pp. 372–393, 2020, doi: 10.1016/j.powtec.2020.05.111
  16. Y. Wei, M. W. Woo, C. Selomulya, W. D. Wu, J. Xiao, and X. D. Chen, “Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion,” Powder Technol., vol. 355, pp. 93–105, 2019, doi: 10.1016/j.powtec.2019.07.017
  17. B. Hernandez, B. Fraser, L. Martin De Juan, and M. Martin, “Computational Fluid Dynamics (CFD) Modeling of Swirling Flows in Industrial Counter-Current Spray-Drying Towers under Fouling Conditions †,” Ind. Eng. Chem. Res., vol. 57, no. 35, pp. 11988–12002, 2018, doi: 10.1021/acs.iecr.8b02202
  18. K. Elsayed and C. Lacor, “Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters,” Comput. Fluids, vol. 51, no. 1, pp. 48–59, 2011, doi: 10.1016/j.compfluid.2011.07.010
  19. M. Mezhericher, A. Levy, and I. Borde, “Droplet-droplet interactions in spray drying by using 2D computational fluid dynamic,” Dry. Technol., vol. 26, no. 3, pp. 265–282, 2008, doi: 10.1080/07373930801897523
  20. H. Jubaer, S. Afshar, J. Xiao, X. D. Chen, C. Selomulya, and M. W. Woo, “On the effect of turbulence models on CFD simulations of a counter-current spray drying process,” Chem. Eng. Res. Des., vol. 141, pp. 592–607, 2019, doi: 10.1016/j.cherd.2018.11.024
  21. S. Biringen and C. Y. Chow, An introduction to computational fluid mechanics by example. 2011. doi: 10.1002/9780470549162
  22. A. Ziaee, A. B. Albadarin, L. Padrela, T. Femmer, E. O’Reilly, and G. Walker, “Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches,” Eur. J. Pharm. Sci., vol. 127, no. October 2018, pp. 300–318, 2019, doi: 10.1016/j.ejps.2018.10.026

Last update:

No citation recorded.

Last update:

No citation recorded.