1Departemen Teknik Geodesi, Indonesia
2Fakultas Teknik Universitas Diponegoro, Indonesia
BibTex Citation Data :
@article{JGUndip30637, author = {Maharany Ayu Hapsary and Sawitri Subiyanto and Hana Firdaus}, title = {ANALISIS PREDIKSI PERUBAHAN PENGGUNAAN LAHAN DENGAN PENDEKATAN ARTIFICIAL NEURAL NETWORK DAN REGRESI LOGISTIK DI KOTA BALIKPAPAN}, journal = {Jurnal Geodesi Undip}, volume = {10}, number = {2}, year = {2021}, keywords = {ANN, Pemodelan, Perubahan Penggunaan Lahan, Regresi Logistik, RTRW}, abstract = { ABSTRAK Pertumbuhan dan perkembangan suatu kota menyebabkan terjadinya perubahan penggunaan lahan akibat dari meningkatnya kebutuhan lahan dan aktifitas penduduk dalam menjalankan kehidupan ekonomi, sosial, budaya, dan politik. Sistem Informasi Geografi (SIG) dapat digunakan untuk memonitor dan memprediksi perubahan penggunaan lahan dengan menghubungkan faktor-faktor perubahan. Penelitian ini bertujuan untuk mengetahui perubahan penggunaan lahan di Kota Balikpapan periode tahun 2009-2019, memprediksi penggunaan lahan dengan model Artificial Neural Network (ANN) dan Regresi Logistik, serta menentukan kesesuaian penggunaan lahan hasil prediksi tahun 2029 dengan peta Rencana Tata Ruang Wilayah (RTRW) Kota Balikpapan tahun 2012-2032. Data primer yang digunakan untuk penelitian adalah peta penggunaan lahan hasil klasifikasi terbimbing ( supervised ) dari citra Landsat 7 tahun 2009, citra SPOT 5 tahun 2014, dan citra SPOT 7 tahun 2019. Pemodelan perubahan penggunaan lahan dilakukan dengan menggunakan sebuah plugins yaitu MOLUSCE ( Modules for Land Use Change Simulations) pada perangkat lunak QGIS. Variabel faktor pendorong perubahan yang digunakan berupa jarak ke jalan, jarak ke sungai, jarak ke permukiman dan kepadatan penduduk. Hasil penelitian menunjukkan perubahan penggunaan lahan Kota Balikpapan tahun 2009-2019 mengalami penurunan luas pada kebun campuran berkurang sebesar 3.499,69 Ha (6,85%) dan mangrove meningkat sebesar 2.515 Ha (4,92%). Pemodelan perubahaan penggunaan lahan dengan metode ANN memiliki nilai akurasi model yang lebih tinggi dibandingkan dengan metode regresi logistik melalui validasi model antara peta prediksi penggunaan lahan dengan peta eksisting yang menghasilkan nilai indeks kappa sebesar 0,620 untuk model ANN dan 0,588 untuk model regresi logistik. Tingkat kesesuaian setelah dilakukan overlay antara peta prediksi penggunaan lahan tahun 2029 dengan model ANN dan Regresi Logistik terhadap peta RTRW dinyatakan cukup baik yaitu sebesar 44,25% dan 43,49%. }, issn = {2809-9672}, pages = {88--97} doi = {10.14710/jgundip.2021.30637}, url = {https://ejournal3.undip.ac.id/index.php/geodesi/article/view/30637} }
Refworks Citation Data :
ABSTRAK
Pertumbuhan dan perkembangan suatu kota menyebabkan terjadinya perubahan penggunaan lahan akibat dari meningkatnya kebutuhan lahan dan aktifitas penduduk dalam menjalankan kehidupan ekonomi, sosial, budaya, dan politik. Sistem Informasi Geografi (SIG) dapat digunakan untuk memonitor dan memprediksi perubahan penggunaan lahan dengan menghubungkan faktor-faktor perubahan. Penelitian ini bertujuan untuk mengetahui perubahan penggunaan lahan di Kota Balikpapan periode tahun 2009-2019, memprediksi penggunaan lahan dengan model Artificial Neural Network (ANN) dan Regresi Logistik, serta menentukan kesesuaian penggunaan lahan hasil prediksi tahun 2029 dengan peta Rencana Tata Ruang Wilayah (RTRW) Kota Balikpapan tahun 2012-2032. Data primer yang digunakan untuk penelitian adalah peta penggunaan lahan hasil klasifikasi terbimbing (supervised) dari citra Landsat 7 tahun 2009, citra SPOT 5 tahun 2014, dan citra SPOT 7 tahun 2019. Pemodelan perubahan penggunaan lahan dilakukan dengan menggunakan sebuah plugins yaitu MOLUSCE (Modules for Land Use Change Simulations) pada perangkat lunak QGIS. Variabel faktor pendorong perubahan yang digunakan berupa jarak ke jalan, jarak ke sungai, jarak ke permukiman dan kepadatan penduduk. Hasil penelitian menunjukkan perubahan penggunaan lahan Kota Balikpapan tahun 2009-2019 mengalami penurunan luas pada kebun campuran berkurang sebesar 3.499,69 Ha (6,85%) dan mangrove meningkat sebesar 2.515 Ha (4,92%). Pemodelan perubahaan penggunaan lahan dengan metode ANN memiliki nilai akurasi model yang lebih tinggi dibandingkan dengan metode regresi logistik melalui validasi model antara peta prediksi penggunaan lahan dengan peta eksisting yang menghasilkan nilai indeks kappa sebesar 0,620 untuk model ANN dan 0,588 untuk model regresi logistik. Tingkat kesesuaian setelah dilakukan overlay antara peta prediksi penggunaan lahan tahun 2029 dengan model ANN dan Regresi Logistik terhadap peta RTRW dinyatakan cukup baik yaitu sebesar 44,25% dan 43,49%.
Article Metrics:
Last update:
View My Stats
Jurnal Geodesi Undip
Departemen Teknik Geodesi, Fakultas Teknik, Universitas Diponegoro