skip to main content

PEMODELAN ANGKA HARAPAN HIDUP DI INDONESIA DENGAN PENDEKATAN BAYESIAN: BAYESIAN ADAPTIVE SAMPLING DAN BAYESIAN MODEL AVERAGING DALAM SELEKSI VARIABEL

*Fariz Budi Arafat orcid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Prajna Pramita Izati  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This study applies Bayesian Adaptive Sampling (BAS) and Bayesian Model Averaging (BMA) to model life expectancy in Indonesia, addressing model uncertainty and improving predictive accuracy. The analysis incorporates Zellner’s g-prior, which enhances variable selection by balancing prior information and data-driven learning, ensuring more stable and reliable parameter estimation. Bayesian methods provide greater flexibility compared to classical regression, particularly in managing heterogeneous demographic data. The results identify poverty rate, healthcare professional ratio per 1,000 residents, percentage of infants receiving exclusive breastfeeding, and regional health expenditure as key determinants of life expectancy. The poverty rate negatively impacts life expectancy, whereas the other factors contribute positively, highlighting the importance of healthcare access, infant nutrition, and government investment in public health. The final model achieves an R² of 78.1%, indicating that these variables collectively explain a substantial proportion of life expectancy variability. By integrating Zellner’s g-prior, Bayesian inference facilitates a robust selection of influential predictors, leading to more precise policy recommendations. The study suggests that enhancing healthcare distribution, promoting breastfeeding awareness, and optimizing health budget allocation can significantly improve life expectancy outcomes. Bayesian methods provide a powerful framework for demographic modeling by incorporating uncertainty and refining estimation accuracy.
Fulltext View|Download
Keywords: Bayesian

Article Metrics:

  1. Australian Bureau of Statistics 2021-2023, Life expectancy, ABS, viewed 3 May 2025, < https://www.abs.gov.au/statistics/people/population/life-expectancy/latest-release>
  2. Clyde, M.A., Ghosh, J. and Littman, M.L., 2011. Bayesian adaptive sampling for variable selection and model averaging. Journal of Computational and Graphical Statistics, 20(1), pp.80-101
  3. Clyde, M. and George, E.I., 2004. Model uncertainty
  4. Fernandez, C., Ley, E. and Steel, M.F., 2001. Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100(2), pp.381-427
  5. Forte, A., Garcia‐Donato, G. and Steel, M., 2018. Methods and tools for Bayesian variable selection and model averaging in normal linear regression. International Statistical Review, 86(2), pp.237-258
  6. Hoeting, J.A., Madigan, D., Raftery, A.E. and Volinsky, C.T., 1999. Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors. Statistical science, 14(4), pp.382-417
  7. Kass, R.E. and Wasserman, L., 1995. A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. Journal of the american statistical association, 90(431), pp.928-934
  8. Katianda, K. R., Goejantoro, R., & Satriya, A. M. A. 2021. Estimasi Parameter Model Regresi Linier dengan Pendekatan Bayes. EKSPONENSIAL, 11(2), 127-132
  9. Mahmudah, N., Ningrum, I. K. and Dayanti, F. 2024. Implementasi Regresi Logistik Bayesian Pada Indeks Pembangunan Manusia. Journal of Mathematics Education and Science, 7(1), pp. 85–91. doi: 10.32665/james.v7i1.2427
  10. Maryani, H., & Kristiana, L. 2018. Pemodelan angka harapan hidup (AHH) laki-laki dan perempuan di Indonesia tahun 2016. Buletin Penelitian Sistem Kesehatan, 21(2), 71-81
  11. Maulana, M. A., Farlian, T., Handayani, M., & Juliansyah, R. 2024. PENGARUH PDRB PERKAPITA DAN PENGELUARAN PEMERINTAH TERHADAP ANGKA HARAPAN HIDUP DI PROVINSI ACEH. Jurnal Review Pendidikan dan Pengajaran (JRPP), 7(3), 6769-6778
  12. Porwal, A. and Raftery, A.E., 2022. Comparing methods for statistical inference with model uncertainty. Proceedings of the National Academy of Sciences, 119(16), p.e2120737119
  13. Sitorus, N., Yusrizal, Y. and Nasution, J. 2024. Peranan Program Jaminan Kesehatan Nasional (JKN) dalam mendorong Sustainable Development Goals (SDGs) di Indonesia. Economic Reviews Journal, 3(1), pp. 45–60
  14. Sugiantari, A. P., & Budiantara, I. N. 2013. Analisis Faktor-faktor yang mempengaruhi angka harapan hidup di Jawa Timur menggunakan Regresi Semiparametrik Spline. Jurnal sains dan Seni ITS, 2(1), D37-D41
  15. Van Zwet, E., 2019. A default prior for regression coefficients. Statistical methods in medical research, 28(12), pp.3799-3807
  16. Young, W.C., Raftery, A.E. and Yeung, K.Y., 2014. Fast Bayesian inference for gene regulatory networks using ScanBMA. BMC systems biology, 8, pp.1-11
  17. Zellner, A., 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions. Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, North-Holland/Elsevier, pp. 233-243

Last update:

No citation recorded.

Last update:

No citation recorded.