skip to main content

PERBANDINGAN REGRESI NONPARAMETRIK SPLINE TRUNCATED DAN KERNEL GAUSSIAN DALAM MENGANALISIS FAKTOR-FAKTOR PENENTU INDEKS PEMBANGUNAN MANUSIA (IPM) DI INDONESIA

uci nopita safitri  -  Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Jl. WR Supratman, Kandang Limun, Bengkulu, Indonesia 38371, Indonesia
*Idhia Sriliana  -  Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia, Indonesia
Regina Adelisa  -  Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia, Indonesia
Muhammad Hafiz  -  Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia, Indonesia
Pepi Novianti  -  Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The Human Development Index (HDI) is an important indicator for measuring the quality of development in a region. This study compares two nonparametric regression approaches, namely truncated spline regression and Gaussian kernel regression, in analyzing the factors influencing HDI in Indonesia in 2024. The independent variables used include Expected Years of Schooling (HLS), Mean Years of Schooling (RRLS), and the percentage of the poor population (PPM). Nonparametric regression is chosen for its ability to capture complex relationships between variables without strict linearity assumptions. The results show that both methods effectively model the relationship between the variables and HDI. Truncated spline regression performs better in detecting structural changes, while kernel regression is more flexible in capturing smooth relationships. Model evaluation using the coefficient of determination (R²) and mean squared error (MSE) indicates that truncated spline yields an R² of 92.79% and an MSE of 1.8617, while Gaussian kernel regression results in an R² of 82.25% and an MSE of 3.6837. Therefore, truncated spline regression proves to be more accurate in modeling the relationship between determining factors and HDI, and it can serve as a more suitable alternative for analyzing complex and nonlinear patterns in human development policy research.
Fulltext View|Download
Keywords: IPM; Regresi; Nonparametrik; Spline truncated; Kernel Gaussian

Article Metrics:

  1. Alwi, W. & Musfirah, M. 2021. Penerapan regresi nonparametrik spline dalam memodelkan faktor-faktor yang mempengaruhi Indeks Pembangunan Manusia (IPM) di Indonesia tahun 2018. Jurnal MSA, 9(2): 112–119
  2. Anwar, R., Rassiyanti, L. & Pitri, R. 2025. Analisis Regresi Kernel Gaussian untuk Memprediksi Indeks Pembangunan Manusia (IPM) Berdasarkan Faktor Sosial-Ekonomi Provinsi di Indonesia. Jurnal Riset Rumpun Matematika dan Ilmu Pengetahuan Alam, 4(3): 44–53
  3. Asti, A.P. & Darwis, S. 2023. Deteksi kerusakan bearing menggunakan komponen utama kernel. Jurnal Riset Statistika, 19–26
  4. Badan Pusat Statistik. 2024. Indeks Pembangunan Manusia 2024. Jakarta: BPS
  5. Dai, Y. & Zhang, Y. 2013. Machine learning in stock price trend forecasting. Journal of Stanford University, 21: 2021
  6. Dani, A.T.R. & Adrianingsih, N.Y. 2021. Pemodelan regresi nonparametrik dengan estimator spline truncated vs deret Fourier. Jambura Journal of Mathematics, 3(1): 26–36
  7. De Boor, C. 2001. A practical guide to splines. Springer, New York
  8. Dewi, A.F. & Ahadiyah, K. 2023. Analisis Regresi Spline truncated pada Indeks Pembangunan Manusia Jawa Timur tahun 2021. INFERENSI, 6(1)
  9. Draper, N.R. & Smith, H. 1998. Applied Regression Analysis. Wiley, New York
  10. Eubank, R.L. 1999. Nonparametric Regression and Spline Smoothing. Marcel Dekker, New York
  11. Fan, J. & Gijbels, I. 1996. Local Polynomial Modelling and its Applications. Chapman & Hall/CRC, London
  12. Farrell, M.T. & Correa, A. 2007. Gaussian process regression models for predicting stock trends. Relation, 10: 3414
  13. Härdle, W. 1990. Applied Nonparametric Regression. Cambridge University Press, Cambridge
  14. Härdle, W., Müller, M., Sperlich, S. & Werwatz, A. 2004. Nonparametric and Semiparametric Models. Springer, Berlin
  15. (4 penulis → tidak perlu dkk.)
  16. Hastie, T., Tibshirani, R. & Friedman, J. 2009. The Elements of Statistical Learning, 2nd ed. Springer
  17. Purnaraga, T., Sifriyani, S. & Prangga, S. 2020. Regresi nonparametrik spline pada data laju pertumbuhan ekonomi di Kalimantan. BAREKENG, 14(3): 343–356
  18. Rosadi, S., Rinaldi, A., Gunawan, W. & dkk. 2022. Implementasi metode regresi nonparametrik spline untuk menganalisis keuntungan produksi batu-bata. Jurnal Ilmiah Matematika dan Terapan, 19(2): 215–226
  19. Ruppert, D., Wand, M.P. & Carroll, R.J. 2003. Semiparametric Regression. Cambridge University Press
  20. Sanusi, W., Syam, R. & Adawiyah, R. 2019. Model regresi nonparametrik dengan pendekatan spline. Journal of Mathematics, Computations, and Statistics, 2(1): 70–81
  21. Sudiasa, I.N., Yuliana, N., Pradnyana, I.W. & Ramadhan, B. dkk. 2023. Multivariable truncated spline nonparametric regression in modeling HDI of Southeast Sulawesi. Proceedings of ICSMTR 2023
  22. Suparti, Santoso, R., Prahutama, A. & Devi, A.R. 2018. Regresi Nonparametrik. Wade Group
  23. United Nations. 2015. Transforming Our World: The 2030 Agenda for Sustainable Development. New York: United Nations
  24. Wahba, G. 1990. Spline Models for Observational Data. SIAM, Philadelphia
  25. Wand, M.P. & Jones, M.C. 1995. Kernel Smoothing. Chapman & Hall, London
  26. Widiyantoro, D.N. & Ratna, M. 2023. Pemodelan Indeks Pembangunan Gender di Pulau Kalimantan menggunakan metode spline truncated. Jurnal Sains dan Seni ITS, 12(1): D45–D52

Last update:

No citation recorded.

Last update:

No citation recorded.