skip to main content

PREDIKSI SUHU UDARA DI NUSA TENGGARA TIMUR MENGGUNAKAN EXTREME VALUE THEORY

Safira Nuraini Putri  -  Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, Indonesia
*A'yunin Sofro  -  Program Studi Aktuaria, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Forest and land fires are currently rife in Indonesia. This event is one type of ecological disaster caused by environmental and non-environmental activities. One of the impacts of forest and land fires is the loss of forest land in Indonesia. Based on data from 2024, the National Disaster Management Agency noted that East Nusa Tenggara is the province with the largest area of forest fires in Indonesia, which is 93572.19 hectares. To prevent this from continuing, it is necessary to predict weather data related to forest and land fires, namely air temperature. Air temperature can be analyzed using Extreme Value Theory to get the return level in the 2025-2028 return period. The Maximum Likelihood Estimation method was chosen because it has the advantage of estimating parameters accurately and effectively, especially in complex distributions such as the Generalized Extreme Value Distribution. The data used is the maximum air temperature in East Nusa Tenggara in 2020-2024. The results showed that the prediction of air temperature carried out by MLE has a fluctuating and accurate value until it reaches 36.40894°C in 2028.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other

Subject
Type Other
  Download (289KB)    Indexing metadata
Keywords: Suhu; Prediksi; Extreme Value Theory; Maximum Likelihood Estimation; Moment of Method

Article Metrics:

  1. Aditya, Rama. 2024. Analisis Suhu Panas Dan Potensi Cuaca Signifikan Di Sebagian Wilayah Di Indonesia Sepekan Ke Depan. https://www.bmkg.go.id/siaran-pers/analisis-suhu-panas-dan-potensi-cuaca-signifikan-di-sebagian-wilayah-indonesia-sepekan-ke-depan
  2. Bendi, Muhammad Indra, and Yampi R Kaesmetan. 2024. Informasi Peringatan Dini Potensi Kekeringan Meteorologis Provinsi Nusa Tenggara Timur. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI) 7 (1): 46–54. https://doi.org/10.55338/jikomsi.v7i1.2346
  3. BNPB. 2022. Definisi Bencana. https://bnpb.go.id/definisi-bencana
  4. BNPB. 2024a. Informasi Bencana. https://bnpb.go.id/informasi-bencana
  5. BNPB. 2024b. Potensi Ancaman Bencana. https://dev.bnpb.go.id/potensi-ancaman-bencana
  6. Coles, Stuart. 2001. An Introduction to Statistical Modeling of Extreme Values. Berlin: Springer-Verlag London Berlin Heidelberg
  7. Eka Kirana, Astika, and A’yunin Sofro. 2024. Prediksi Kelembaban dan Curah Hujan Maksimum di Kabupaten Malang Menggunakan Bivariate Extreme Value Logistic. Jurnal Ilmiah Matematika 12 (03)
  8. Ferreira, B. Y.Ana, and Laurens De Haan. 2015. On the Block Maxima Method in Extreme Value Theory: PWM Estimators. Annals of Statistics 43 (1): 276–98. https://doi.org/10.1214/14-AOS1280
  9. Habibulloh, Wildan, and A’yunin Sofro. 2023. Prediksi Suhu Udara Di Jawa Tengah Menggunakan Extreme Value Theory. MATHunesa: Jurnal Ilmiah Matematika 11 (3): 489–95. https://doi.org/10.26740/mathunesa.v11n3.p489-495
  10. Kotz, Samuel, and Saralees Nadarajah. 2011. Extreme Value Distributions Theory and Applications. International Encyclopedia of Statistical Science. London: Imperial College Press
  11. Minkah, Richard. 2016. An Application of Extreme Value Theory to the Management of a Hydroelectric Dam. SpringerPlus 5 (1): 1–12. https://doi.org/10.1186/s40064-016-1719-2
  12. Nazmi, N., H. F.S. Saipol, F. Yusof, S. A. Mazlan, dkk. 2020. Parameter Estimation of Extreme Rainfall Distribution in Johor Using Bayesian Markov Chain Monte Carlo. IOP Conference Series: Earth and Environmental Science 479 (1). https://doi.org/10.1088/1755-1315/479/1/012019
  13. Omey, Edward, Fermin Mallor, and Eulalia Nualart. 2009. An Introduction to Statistical Modelling of Extreme Values. Application to Calculate Extreme Wind Speeds. Hub Research Paper, no. November, 45
  14. Vivekanandan, N. 2020. Selection of Best Fit of Extreme Value Family of Distributions for Frequency Analysis of River Flow Data. International Journal of Research Studies in Science, Engineering and Technology 7 (5): 13–18
  15. Wacana, Petrasa. 2014. Bencana Ekologis Sebagai Dampak Perubahan Iklim Global Dan Upaya Peredaman Risiko Bencana. Badan Penanggulangan Bencana Daerah. https://bpbd.bulelengkab.go.id/informasi/detail/artikel/bencana-ekologi-sebagai-dampak-perubahan-iklim-global-dan-upaya-peredaman-risiko-bencana-1
  16. Zwonik, Connor Peter. 2020. Northeastern United States Using the Method of Block Maxima Assessing Trends in Future Precipitation Extremes in the Northeastern United States Using the Method of Block Maxima

Last update:

No citation recorded.

Last update:

No citation recorded.