skip to main content

PERAMALAN HARGA PASAR TELUR AYAM RAS MENGGUNAKAN VECTOR AUTOREGRESSIVE (VAR) (Studi Kasus: Harga Pasar Telur Ayam Ras di eks Karesidenan Surakarta Tahun 2020-2022)

*Bernadus Divanda Widya  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Iut Tri Utami  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The stabilization of the market price of broiler eggs is one of the points that the government should pay attention to. This is to prevent significant price increases or decreases. Government precautions to keep broiler egg prices stable can be done through forecasting. Vector autoregression (VAR) is a time series model that can be used to model and forecast data containing multiple variables at once. VAR models were constructed to estimate relationships between economic variables without paying attention to exogenous issues. The level of predictive accuracy of vector autoregressive (VAR) models can be seen from the SMAPE value. The smaller the SMAPE value, the better the prediction results. The data used are the weekly prices of broiler eggs in Kab. Boyolali, Kab. Karanganyar, Kab. Klaten and Surakarta from January 2020 to June 2022. The vector autoregression (VAR) method prediction gave his SMAPE values of 13.48% for Kab. Boyolali, 13,38% Kab. Karanganyar, 13,86% of the price of broiler eggs in Kab. Klaten and 13.25% of the variable price of broiler chicken eggs in Surakarta city. The SMAPE values are between 10% and 20%, so the prediction accuracy is good.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (77KB)    Indexing metadata
Keywords: Vector Autoregressive (VAR), Symmetric Mean Absolute Error (SMAPE), Forecasting

Article Metrics:

  1. Fajarani, I, Y., .dan Anggraeni, W. 2019. Peramalan Harga Beras Sebagai Komoditas Utama Pangan Indonesia Dengan Menggunakan Vector Autoregressive (VAR). Jurnal Teknik Pomits, Hal: 1 - 6
  2. Gujarati, D., dan Porter, D.N. 2012. Basic Ekonometrics: Dasar-dasar Ekonometrika Edisi 5. Jakarta: Salemba Empat
  3. Johnson, R. A & Wichern, D.W., 2007. Applied Multivariate Statistical Analysis. Sixth ed. United states Of America: Pearson Education, Inc
  4. Jatra, A, P., Darnah, A, N. dan Syripuddin. 2013. Peramalan Indeks Harga Konsumen (IHK) Kota Samarinda Dengan Metode Double Exponential Smoothing Dari Brown. Jurnal Exponential Vol. 4, No. 1, Hal: 39-46
  5. Makridakis, McGee., dan Wheelwright. 1999. Metode dan Aplikasi Peramalan Edisi Kedua. Jakarta: Binarupa Aksara
  6. Possumah, M, K. dan Rohmawati, A, A. 2020. Prediksi Harga Saham Menggunakan Vector Autoregressive (VAR) Non-Stasioner (Studi Kasus: Saham Perusahaan PT United Tractors Tbk). e-Proceeding of Engineering Vol 7, No. 2, Hal: 8361-8374
  7. Sims, C..A. 1980. Macroeconomis and Reality. Jurnal Econometrica Vol. 48, No. 1
  8. Tyas, V,R,A., Komang, D. dan Made, A. 2014. Penerapan Model Arbitrage Pricing Theory dengan Pendekatan Vector Autoregressive dalam Mengestimasi Expected Return Saham. Jurnal Matematika Vol. 3, No. 1
  9. Wei, W.W.S. 2006. Time Series Analysis Univariate and Multivariate Methods Second Edition. USA: Person Education, Inc
  10. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688

Last update:

No citation recorded.

Last update:

No citation recorded.