skip to main content

ANALISIS FAKTOR RISIKO GAGAL JANTUNG DENGAN REGRESI LOGISTIK BERBASIS IoMT

*Rizwan Arisandi orcid scopus  -  Departement of Computer Science, Faculty of Informatics Engineering, Bina Nusantara University, Semarang, Indonesia 50144, Indonesia
Adhe Lingga Dewi orcid scopus  -  Universitas Bina Nusantara, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Technology in the era of revolution 4.0, which is currently developing so rapidly, has given birth to Internet of Things technology and can be implemented in the health sector or called the Internet of Medical Things (IoMT). IoMT technology can be applied to monitor heart disease patients and obtain medical record data that is useful for further decision making, such as predicting the potential for heart disease using logistic regression. This study uses medical record data for heart disease with the variable heart failure as the dependent variable and the variables age, gender, diabetes, anemia, hypertension, smoking habits as independent variables. In this research, machine learning was applied with a logistic regression algorithm on clinical data collected via IoMT devices to detect heart disease. Classification. The accuracy of the model was obtained at 75%, so it can be said that the model score is on the average model scale, which means the model is quite good. The average gender of patients who suffer a heart attack is male with an age range of 60-70 years. Furthermore, in patients who have a history of hypertension, a person's risk of developing heart failure increases by 4,2%. Meanwhile, in patients who have a history of diabetes, a person's risk of developing heart failure increases by 4%.
Fulltext View|Download
Keywords: Regresi logistik, Internet of Medical Things, Heart Failure

Article Metrics:

  1. Aljabr, A. A., & Kumar, K. (2022). Design and implementation of Internet of Medical Things (IoMT) using artificial intelligent for mobile-healthcare
  2. Alwi, W., Ermawati, & Husain, A. (2018). Analisis Regresi Logistik Biner Untuk Memprediksi Kepuasan Pengunjung Pada Rumah Sakit Umum Daerah Majene. Jurnal MSA, 20-26
  3. Aniamarta, T., Huda, A. S., & Aqsha, F. L. (2022). Review Artikel: Penyebab dan Pengobatan Serangan. Jurnal Biologica Samudra, 22-31
  4. Aprilia Alifta Salsabyla dan Sri Pingit Wulandari. (2023). Permodelan Regresi Logistik Biner terhadap Analisis Penderita Penyakit Jantung Koroner di RSUD Dr SOEGIRI Lamongan. Jurnal Sains dan Seni Its Vol. 12, No. 1
  5. Aditya Pratama., Azriel Christian Nurcahyo., Listra Firgia. (2023). Penerapan Machine Learning dengan Algoritma Logistik Regresi untuk Memprediksi Diabetes. Jurnal Nasional Corisindo. Vol 1. No 1. Pp. 116
  6. Bekti, R. B. Pratiwi, N., Jatipaningrum, M. T., & Auliana, D. (2017). Analisis pengaruh Lokasi Dan Karakteristik Konsumen Dalam Memilih Minimarket Dengan Metode Regresi Logistik Dan Cart. Jurnal Sinta, 119-130
  7. Clark, R. G., Blanchard, W., Hui, F. K., Tian, R., & Woods, H. (2023, April). Dealing With Complete Separation and Quasi-Complete Separation In Logistic Regression For Linguistic Data. 2(1), 1-10
  8. D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier dan Confusion Matrix pada Analisis Sentimen Berbasis Teks Pada Twitter,” J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 5, no. 2, pp. 697–711, 2021, doi: http://dx.doi.org/10.30645/j-sakti.v5i2.369
  9. Diah Putri Kartikasari., Tengku Syahvina Rival Dini., Puji Sri Alhirani., Pebi Mina Husania., Tiara Ayu Triarta Tambak. (2023). Pengaruh Internet of Things (IoT) Dalam Bidang Kesehatan Terhadap Masyarakat Umum. IJESPG Journal Vol. 1, No. 3
  10. Hosmer, D. W., & Lemeshow, S. (2000). Applied Logistic Regression. New Jersey: John Wiley & Sons, Inc
  11. Novitasari, D. A., dkk. 2019. Analisis Regresi Logistik Ordinal pada Kepuasan Pelanggan Mebel Lamongan. Jurnal Penelitian Ilmu Manajemen, Vol. IV, No. 1, Februari 2019: 841-848
  12. Priambodo, R., & Kadarina, T. M. (2020). Pelacakan Lokasi Pasien berbasis Internet of Things. Jurnal Inovtek Polbeng - Seri Informatika, 263-273
  13. Putri, F. C., Andriyati, A., & Rohaeti, E. (2022). Analisis Regresi Logistik Multinomial pada Faktor-Faktor yang Mempengaruhi Status Pasien Covid-19 di Kota Depok. Jurnal Matematika Integratif, 103-114
  14. Si-Ahmed, A., Al-Garadi, M. A., & Boustia, N. (2023). Survey of Machine Learning based intrusion detection methods for Internet of Medical Things. Applied Soft Computing, 110227
  15. Rizwan Arisandi. (2023). Perbandingan Model Klasifikasi Random Forest Dengan Resampling Dan Tanpa Resampling Pada Pasien Penderita Gagal Jantung. Jurnal Gaussian 12(1):136-145. Vol 12. No Pp. 136-145 DOI: 10.14710/j.gauss.12.1.136-145
  16. Sukmadilaga, A., & Rosadi, S. D. (2020). Upaya Hukum Terhadap Pelanggaran Implementasi Internet of Things (Iot) Di Bidang Pelayanan Kesehatan Menurut Ketentuan Perlindungan Data Pribadi. Suara Keadilan, 205-221
  17. Tampil, dkk. 2017. Analisis Regresi Logistik untuk Menentukan Faktor-Faktor yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado., D’Cartesian: Jurnal Matematika dan Aplikasi, Vol. 6, No. 2, (2017): 56-62
  18. Varamita, A. (2017). Analisis Regresi Logistik Dan Aplikasinya Pada Penyakit Anemia Untuk Ibu Hamil di Rskd Ibu Dan Anak Siti Fatimah Makassar. Skripsi
  19. Y. Crismayella, N. Satyahadewi, and H. Perdana, “Algoritma Adaboost pada Metode Decision Tree untuk Klasifikasi Kelulusan Mahasiswa,” Jambura Journal of Mathematics, vol. 5, no. 2, pp. 278–288, Aug. 2023, doi: 10.34312/jjom.v5i2.18790

Last update:

No citation recorded.

Last update:

No citation recorded.