skip to main content

PREDIKSI HARGA DAGING SAPI DI KABUPATEN BREBES MENGGUNAKAN PEMODELAN ARFIMA DENGAN EFEK GARCH

*Nanda Diva Lingkar Imani  -  Department of Statistics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Tembalang, Semarang, Indonesia 50275, Indonesia
Bagus Arya Saputra  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Tembalang, Semarang, Indonesia 50275, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Beef is a source of animal protein which is rich in nutrients and much-loved by the people of Indonesia. Brebes Regency is an area in Indonesia that has local livestock assets, namely Java Brebes cattle or also known as Jabres cattle. The existence of this jabres cattle is one of the guardians of beef price stability in Brebes in particular and in Central Java in general. The price of beef often fluctuates, to minimize losses, it is necessary to predict the market price. The model for predicting research data is the ARFIMA-GARCH model which is a model that can explain long memory patterns in time series data and experience heteroscedasticity problems. This study aims to obtain the best model with time series analysis and predict the selling price of beef in Brebes Regency for the next 52 weeks using ARFIMA modeling which is enhanced using the addition of the GARCH model. The results of the analysis that has been carried out on beef price data in Brebes Regency can be concluded that the best model obtained is the ARFIMA model ([9], 0.5461747, 0) – GARCH (1, 1). Based on the predictions that have been made using the best model, the resulting MAPE value is 1.56375%, so the model is very good for predicting beef prices in Brebes Regency in the next several periods.
Fulltext View|Download
Keywords: Beef; prediction; long memory; ARFIMA; GARCH.

Article Metrics:

  1. BPS Jawa Tengah. 2021. Data Kemiskinan 2019-2021. Tersedia di https://jateng.bps.go.id/indicator/23/34/1/kemiskinan.html (diakses pada tanggal 19 Oktober 2022)
  2. Daniel, W. W. 1989. Statistika Nonparametrik Terapan. Jakarta. PT. Gramedia
  3. Ekananda, M. 2017. Analisis Data Time Series. Jakarta: Mitra Wacana Media
  4. Hosking, J.R.M. 1981. Fractional Differencing. Biometrika, Vol 68, 165-176
  5. ICDX Group. 2021. Apa Itu Komoditi. Tersedia di https://www.icdx.co.id/news-detail/publication/apa-itu-komoditi. (diakses tanggal 21 Oktober 2022)
  6. Kartikasari, P., Yasin, H., & Di Asih, I. M. 2021. Autoregressive fractional integrated moving average (Arfima) model to predict COVID-19 pandemic cases in Indonesia. Media Statistika, Vol 14(1), 44-55
  7. Kementerian Pertanian. Rencana Stategis Kementerian Pertanian 2020-2024. Tersedia di https://www.pertanian.go.id/home/?show=page&act=view&id=12 (diakses pada tanggal 21 Oktober 2022)
  8. Makridakis, S., Wheelwright, S.C., dan McGee, V.E. 1999. Metode dan Aplikasi Peramalan. Edisi kedua. Jakarta: Binarupa Aksara
  9. Meitasuci, Dzulfiana. 2018. Kajian Komoditas Tanaman Padi Dan Jagung Dalam Mendukung Ketahanan Pangan di Kecamatan Sumbang Kabupaten Banyumas. Doctoral Dissertation, Universitas Muhammadiyah Purwokerto
  10. Natanael, D. K., Safitri, D., & Suparti, S. 2018. Prediksi Harga Minyak Dunia dengan Metode Autoregressive Fractionally Integrated Moving Average (ARFIMA). Jurnal Statistika Universitas Muhammadiyah Semarang, Vol 6(1), 65-72
  11. Panjaitan, H., Prahutama, A., & Sudarno, S. 2018. Peramalan Jumlah Penumpang Kereta Api Menggunakan Metode ARIMA, Intervensi dan ARFIMA (Studi Kasus: Penumpang Kereta Api Kelas Lokal EkonomiDAOP IV Semarang). Jurnal Gaussian, Vol 7(1), 96-109
  12. Rosadi, D. 2011. Analisis Ekonometrika & Runtun Waktu Terapan dengan R:
  13. Aplikasi untuk Bidang Ekonomi, Bisnis, dan Keuangan. Yogyakarta:
  14. ANDI
  15. Sihati. Sistem Informasi Harga dan Produksi Komoditi. Tersedia di https://hargajateng.org/
  16. Soejoeti, Z. 1987. Analisis Runtun Waktu. Jakarta: Karunika Jakarta
  17. Tsay, R. S. 2005. Analysis Of Financial Time. Chicago: A John Wiley & Sons, Inc
  18. Wei, W.W.S. 2006. Time Series Analysis: Univariate and Multivariate Methods. New York: Pearson Inc

Last update:

No citation recorded.

Last update:

No citation recorded.