skip to main content

PENENTUAN VALUE AT RISK (VAR) PADA PORTOFOLIO BIVARIAT DENGAN PENDEKATAN COPULA GUMBEL

*Karina Febriani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Deby Fakhriyana  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

One way to minimize risk in stock investment is stock portfolio. Value at Risk (VaR) is a calculation method that can be used to estimate the risk of a stock portfolio. VaR can be measured by parametric and non-parametric approaches. Calculation of VaR with Monte Carlo simulation assumes the data is normally distributed. Stock return data generally has high volatility so that the residual variance of the model is not constant (heteroscedasticity) and not normally distributed. The ARIMA-GARCH model can be used to solve heteroscedasticity problems. Copula is a tool used to model the combined distribution of residuals from the ARIMA-GARCH model which does not require normality assumptions. Gumbel's copula is copula that has the best sensitivity to high risk. This study uses stock data of PT Bukit Asam Tbk (PTBA) and PT Chandra Asri Petrochemical Tbk (TPIA) for the period April 1 2020 – December 1 2022. The initial step of this research is model stock returns using the ARIMA-GARCH method and then calculate portfolio VaR using the Gumbel’s copula. The results showed that the best model for PTBA is ARIMA(2,0,2) GARCH(1,1) and for TPIA is ARIMA(1,0,0) GARCH (1,1). At the 95% confidence level, the portfolio risk is 2,41%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA From
Subject
Type Research Instrument
  Download (241KB)    Indexing metadata
Keywords: Value at Risk; Gumbel copula; ARIMA; GARCH

Article Metrics:

  1. Alexander, N., Destriana, N. 2013. Pengaruh Kinerja Keuangan terhadap return Saham. Jurnal Bisnis dan Akuntansi Vol. 15, No. 2 : Hal. 123-132
  2. Jorion, P. 2007. Value at Risk The New Benchmark for Managing Financial Risk. United State : McGraw-Hill
  3. Kustodian Sentral Efek Indonesia. 2022. Statistik Pasar Modal Indonesia. http://www.ksei.co.id. Diakses : 20 November 2022
  4. Nelsen, R.B. 2006. An Introduction to Copula. New York : Springer Science+Business Media
  5. Prasetya, L.B. 2018. Estimasi Value at Risk Portofolio Saham Menggunakan Metode GARCH-COPULA. Jurnal Gaussian Vol. 7, No. 4 : Hal. 397-407
  6. Prihatiningsih, D.R. 2020. Value at Risk (VaR) Dan Conditional Value at Risk (CVaR) dalam Pembentukan Portofolio Bivariat Menggunakan Copula Gumbel. Jurnal Gaussian Vol. 9, No. 3 : Hal. 326-335
  7. Hartati, Imelda, S. 2017. Aplikasi GARCH dalam mengatasi Volatilitas pada data Keuangan. Jurnal Matematika Vol. 7, No. 2 : Hal. 107-118
  8. Suyasa, N.K., Dharmawan, K., Sari, K. 2021. Perhitungan Portofolio Optimal dengan Metode Mean-Semivariance dan Mean Absolute Deviation. E-Jurnal Matematika Vol. 10, No. 2 : Hal. 65-69
  9. Tandelilin, E. 2010. Portofolio dan Investasi. Yogyakarta: Kanisius
  10. Tsay, R. S. 2005. Analysis of Financial Time Series. New York: John Wiley & Son
  11. Wei, W.S. 2006. Time Series Analysis Univariate and Multivariate Methods. United States of America: Pearson Education
  12. Yahoo Finance. 2022. http://finance.yahoo.com. Diakses : 20 November 2022

Last update:

No citation recorded.

Last update:

No citation recorded.