skip to main content

PENERAPAN REGRESI COX UNTUK MENGANALISIS VARIABEL YANG BERPENGARUH TERHADAP DURASI STUDI MAHASISWA

*Dewi Wulandari  -  Departement of Mathematics Education, Universitas PGRI Semarang, Jl. Sidodadi Timur No,24 Semarang, Indonesia 50232, Indonesia
Rhoudhotul Widyastuti  -  Departement of Mathematics Education, Universitas PGRI Semarang, Jl. Sidodadi Timur No,24 Semarang, Indonesia 50232, Indonesia
Dina Prasetyowati  -  Departement of Mathematics Education, Universitas PGRI Semarang, Jl. Sidodadi Timur No,24 Semarang, Indonesia 50232, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

One aspect that concerns stakeholders in a university is the study duration of students because this is one of the determinants of the quality of a university. In the Mathematics Education study program, at Universitas PGRI Semarang, there has never been any research on the length of study of students. So we conducted this study to determine the factors that significantly influence students' study duration. We applied Cox regression to data on students of the Mathematics Education study program at Universitas PGRI Semarang from entering 2017 until graduating in various years from 2021 to 2023 with predictor variables of Cumulative Achievement Index, gender, parental educational background, and student’s participation in the organizations. These data were collected using a questionnaire and data triangulation was confirmed through interviews. Meanwhile, the students’ study duration data is the secondary data that has been documented in the information system of Universitas PGRI Semarang. Analysis using Cox Regression is very suitable for the case study in this study because the dependent variable in this study is survival data. In addition, Cox Regression is known as a method that is relatively easy, simple and does not require survival data to have a certain distribution. From the analysis results, it was found that the Cumulative Achievement Index is the factor that has the most significant influence on the length of student study.

 

Fulltext View|Download
Keywords: Survival Analysis; Study; Duration; Cox Regression.

Article Metrics:

  1. Agwil, W., Fransiska, H., dan Hidayati, N. 2020. Analisis Ketepatan Waktu Lulus Mahasiswa dengan Menggunakan Bagging Cart. Fibonacci: Jurnal Pendidikan Matematika dan matematika, 6 (2) Pp. 155-166
  2. Bain, L. J., dan Engelhardt, M. 1992. Introduction to Probability and Mathematical Statistics 2nd Edition. Boston. Duxburry Press
  3. Collet, D. 2003. Text in Statistical Science: Modelling Survival Data in Medical Research Second Edition. USA. Chapman & Hall
  4. Deo, S. V., Deo, V., dan Sundaram, V. 2021. Survival Analysis—Part 2: Cox Proportional Hazards Model. Indian J Thorac Cardiovasc Surg. Vol. 37(2) Pp. 229–233
  5. Dessai, S., Simha, V., dan Patil, V. 2018. Stepwise Cox regression analysis in SPSS. Cancer Research, Statistics, and Treatment Vol 1(2) Pp. 167-170
  6. Djatmika, E. T. 2023. Leadership Accountability: Gender Doesn’t Matter. International Journal of Arts Humanities and Social Sciences Studies 8 (6) Pp. 24-30
  7. Fitriana, R. 2016. Analisis Survival Faktor-Faktor yang Mempengaruhi Lama Studi Mahasiswa Pendidikan Matematika Angkatan 2010 dengan Metode Regresi Cox Proportional Hazard. Tugas Akhir Program Studi Statistika Terapan Dan Komputasi, Jurusan Matematika FMIPA UNNES. https://lib.unnes.ac.id/25050/
  8. Hosmer, D. W., Lemeshow, S., dan May, S. 2008. Applied Survival Analysis: Regression Modelling of Time to Event Data. New Jersey. John Wiley
  9. Kristanti, F. T. 2019. Financial Distress 1st Edition. Malang. Intelegensia Media
  10. Lane, W. R., Looney, S. W., and Wansley, J. W. 1986. An Application of The Cox Proportional Hazards Model to Bank Failure. Journal of Banking & Finance 10 (4) Pp. 511-531
  11. Latan, H. 2014. Aplikasi Analisis Data Statistik Untuk Ilmu Sosial dan Sains dengan IBM SPSS. Bandung. Alfabeta
  12. Lawless, J. F. 1982. Statistical Models and Methods for Lifetime Data. USA. John Wiley & Sons, Inc
  13. Lawless, J. F. 2007. The Statistical Analysis of Recurrent Event. USA. Springer Science+Business Media Inc
  14. Maiyanti, S. I., Cahyono, E. S., dan Eliyati, N. 2016. Aplikasi Regresi Cox Metode Backward untuk Menduga Faktor-faktor yang Berpengaruh terhadap Waktu Kelulusan Mahasiswa Bidik Misi Unsri. In PRISMA, Prosiding Seminar Nasional Matematika (pp.418-426)
  15. Prabawati, S., Nasution, Y. N., dan Wahyuningsih, S. 2018. Analisis Survival Data Kejadian Bersama dengan Pendekatan Efron Partial Likelihood (Studi Kasus: Lama Masa Studi Mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Mulawarman Angkatan 2011). Jurnal Eksponensial Vol. 09 Pp. 75–84
  16. Rizalno, M. F., Johar, A., dan Coastera F. F. 2022. Analisis Prediksi Masa Studi Mahasiswa Menggunakan Metode Decision Tree Dengan Penerapan Algoritme Cart (Classification And Regression Trees). Jurnal Rekursif 10 (1) Pp. 96-106
  17. Stel, V. S., Dekker, F. W., Tripepi, G., Zoccali, C., dan Jager, K. J. 2011. Survival Analysis II: Cox Regression. Nephron Clinical Practice 119 (3) Pp. c255-c260
  18. Triana, J. G. 2023. On the Newton-Raphson method and its modifications. Ciencia En Desarrollo 14 (2) Pp. 75-80

Last update:

No citation recorded.

Last update:

No citation recorded.