slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
ANALISIS KETAHANAN HIDUP PADA PENDERITA TUBERKULOSIS PARU-PARU MENGGUNAKAN METODE REGRESI COX PROPORTIONAL HAZARD | Ikrom | Jurnal Gaussian skip to main content

ANALISIS KETAHANAN HIDUP PADA PENDERITA TUBERKULOSIS PARU-PARU MENGGUNAKAN METODE REGRESI COX PROPORTIONAL HAZARD

*Amirul Ikrom  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Lung Tuberculosis is a type of infectious disease caused by the Mycobacterium Tuberculosis bacteria that attacks the lungs. The source of transmission of this disease is a patient with pulmonary tuberculosis. Indonesia has the third highest number of tuberculosis sufferers after India and China. To find out the factors that affect the patient's long survival time, survival analysis can be used. This study uses the Cox Proportional Hazard Regression method because this method can be used to determine the magnitude of the relationship between the dependent and independent variables. The research data was obtained from data on Lung Tuberculosis patients at the Kajen II Public Health Center from January-December 2021. The dependent variable was the length of time they were treated until they experienced an incident (death). The independent variables consisted of age, gender, and history of taking medication (regular or irregular). Based on the results of the analysis, all independent variables had an effect on the dependent variable. The results obtained are that the age category of children is the most at risk of dying, the female sex is the most at risk, and patients with a history of taking irregular medication are the most at risk of dying. 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
ANALISIS KETAHANAN HIDUP PADA PENDERITA TUBERKULOSIS PARU-PARU MENGGUNAKAN METODE REGRESI COX PROPORTIONAL HAZARD (Studi Kasus: Penderita Peyakit TB Paru di Puskesmas Kajen II)
Subject
Type Research Instrument
  Download (382KB)    Indexing metadata
Keywords: Tuberculosis; Survival Analysis; Cox Regression.

Article Metrics:

  1. Collett, D. 1994. Modelling Survival Data in Medical Research. Edisi ke-2. USA: Chapman and Hall
  2. Cook, R. J., Lawless, J. F. 2007. The statistical analysis of recurrent events. New York: Springer
  3. Dinkes NTB. 2022. Investasi Untuk Elimiasi TBC, Selamatkan Bangsa. https://dinkes.ntbprov.go.id/artikel/investai-untuk-elimiasi-tbc-selamatkan-bangsa/. Diakses: 29 Oktober 2022
  4. Guo, S. 2010. Survival analysis. Oxford University Press
  5. Harlan, J. 2017. Analisis Survival. Depok: Gunadarma
  6. Hosmer, D. W., Lemeshow, S., & May, S. (2008). Applied Survival Analysis: Regression Modelling of Time to Event Data. New Jersey: John Wiley
  7. Jakperik, D., Ozoje, M. 2012. Survival analysis of average recovery time of tuberculosis patients in Northern region, Ghana. International Journal of Current Research, 4(9), 123–125
  8. Katadata.co.id. 2021. Penderita Tuberkulosis Terbanyak dari Usia Produktif pada 2020. https://databoks.katadata.co.id/datapublish/2021/10/12/penderita-tuberkulosis-terbanyak-dari-usia-produktif-pada-2020. Diakses: 29 Oktober 2022
  9. Kemenkes RI. 2019. Pedoman Nasional Penanggulangan Tuberkulosis dan Standar Internasional Untuk Pelayanan Tuberkulosis. Kementerian Kesehatan Republik Indonesia
  10. Kemenko PMK. 2021. Menular dan Mematikan, Perpres Penanggulangan TB Segera Terbit. https://www.kemenkopmk.go.id/menular-dan-mematikan-perpres-penanggulangan-tb-segera-terbit. Diakses: 29 Oktober 2022
  11. Kleinbaum, D. G., Klein, M. 2012. Survival Analysis: A Self‐Learning Text. New York: Spinger
  12. Lee, E. T., Wang, J. 2003. Statistical methods for survival data analysis (Vol. 476). John Wiley & Sons
  13. Maruddani, D. A. I., Tarno, Hoyyi, A., Rahmawati, R., dan Wilandari, Y. 2021. Survival Analysis. UNDIP Press
  14. Munif, A., Hidayatullah, A. P. 2003. Penguasaan dan Penggunaan Metode Numerik. Edisi Kedua. Surabaya: Guna Widya
  15. Widyanto, F. C., Triwibowo, C. 2013. Trens Disease Trend Penyakit Masa Kini. Jakarta: Trans Info Media
  16. World Health Organization. 2006. Child Growth Standard. https://www.who.int/tools/child-growth-standards
  17. Ziegel, E. R., Allison, P. D. 1997. Survival Analysis Using the SAS System. In Technometrics (Vol. 39, Issue 3). https://doi.org/10.2307/1271161

Last update:

No citation recorded.

Last update:

No citation recorded.