slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PENERAPAN MODEL ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) TERHADAP HARGA MINYAK MENTAH DUNIA | Famuji | Jurnal Gaussian skip to main content

PENERAPAN MODEL ASYMMETRIC POWER AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (APARCH) TERHADAP HARGA MINYAK MENTAH DUNIA

*Ahmad Famuji  -  Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia
Idhia Sriliana  -  Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia
Winalia Agwil  -  Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Bengkulu, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Heteroscedasticity poses a challenge in ARIMA modeling by causing residual variance to be non-constant, leading to less efficient estimates. This issue often arises in time series data due to volatility, which measures data fluctuation over time. To address heteroscedasticity, models like ARCH and GARCH incorporate variance changes into forecasting. However, they lack the ability to capture asymmetry, the difference in impact between good and bad news on volatility. The APARCH model, on the other hand, addresses this by modeling volatility with asymmetry elements. Daily world crude oil prices, known for high volatility, serve as a case study for this research. By employing the APARCH model, the study aims to forecast these prices accurately. Results indicate that the APARCH(1,1) model outperforms the best GARCH model, ARCH(2), as it yields a smaller Mean Absolute Percentage Error (MAPE) of 6.033487. This highlights the superior accuracy of APARCH in forecasting data with heteroscedasticity issues, particularly in the context of daily crude oil prices.
Fulltext View|Download
Keywords: Crude Oil; Heteroscedaticity; Volatility; ARCH; GARCH; APARCH.
Funding: Universitas Bengkulu

Article Metrics:

  1. Ardi, T. Santoso, R. dan Prahutama, A. 2017. Implementasi Subset Autoregressive Menggunakan Paket Fitar. Jurnal Gaussian, Vol. 6, No. 4, 510-519. DOI : 10.14710/j.gauss.6.4.510-519
  2. Bollerslev, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics 31, 3077327. DOI: 10.1016/0304-4076(86)90063-1
  3. Burnham, K. P. dan Anderson, D. R. 2004. Multimodel Inference. Sociological Methods & Research, 33(2), 261–304. DOI: 10.1177/0049124104268644
  4. Dahoklory, D. Suryowati, K. dan Bekti, R. D. 2016. Analisis Trend dan ARCH-GARCH Untuk Meramalkan Jumlah Pasangan Usia Subur Di Daerah Istimewa Yogyakarta. Jurnal Statistika Industri dan Komputasi Vol. 1, No. 1, PP. 11-22
  5. Ding, Z. Granger, C. W.J. dan Engle, R. F. (1993). A Long Memory Property of Stock Market Returns and a New Model. Journal of Emburpirical Finance, 2(1), 98. DOI: 10.1016/0927-5398(95)90049-7
  6. Engle, R.F. 1982. Autoregressive Conditional Heteroskedasticity with Estimates of The Variance of U.K. Inflation, Econometrica, 50, 987-1008.DOI: 10.2307/1912773
  7. Ervina, Kusnandar, D. dan Imro’ah, N. (2020). Peramalan Volatilitas Saham Menggunakan Model Threshold Generalized Autoregressive Conditional Heteroscedasticity. Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Vol. 09, No. 1, Hal 79-86
  8. Franco, C. dan Zakoian, J. M. (2004). Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes. JOURNAL ARTICLE Vol. 10, No. 4, pp. 605-637. DOI: 10.3150/bj/1093265632
  9. Hartati. Dan Saluza, I. 2017. Aplikasi GARCH dalam Mengatasi Volatilitas Pada Data Keuangan. Jurnal Matematika Vol. 7, No. 2, pp. 107-118. DOI: 10.24843/JMAT.2017.v07.i02.p87
  10. Ljung, G. M. dan Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, Vol. 65, No. 2, pp. 297-303. DOI: 10.2307/2335207
  11. Makridakis, S. Hibon, M. dan Moser, C. 1976. Accuracy of Forecasting: An Empirical Investigation. Journal of the Royal Statistical Society. Series A (General), Vol. 142, No. 2, pp. 97-145. DOI :10.2307/2345077
  12. Martin., V. L. Hurn, A. S. dan Harris, D. 2004. Econometric Modelling with Time Series Specification, Estimation and Testing. Cambridge University Press
  13. Najibullah. Ariansyah, R. dan Rizky, F. 2023. Peramalan Volatilitas IHSG Dan Estimasi Value-At-Risk Menggunakan Model Student Aparch. Jurnal Hei Ema, Vol. 2 No. 1
  14. Pandia, M. D. B. Debataraja, N. N. dan Martha, S. 2019. Pemodelan Volatilitas Saham Menggunakan Model Asymmetric Power Autoregressive Conditional Heteroscedasticity. Buletin Ilmiah Mat, Stat, Dan Terapannya (Bimaster), Vol. 08, No. 1
  15. Tsay, R.S. 2005. Analysis Of Financial Time Series Second Edition. John Wiley And Sons, Inc., Canada
  16. Verbeek, M. 2004. A Guide to Modern Econometrics. Second Edition. Chichester: John Wiley & Sons, Ltd
  17. Wei, W. W. 2006. Time Series Analysis Univariat and Multivariat Methods. Canada: Addision Wesley Publishing Company
  18. Zainal, P. H. Anggraini, Y. dan Rizki, A. 2023. Penerapan Metode Generalized Auto-Regressive Conditional Heteroskedasticity Untuk Peramalan Harga Minyak Mentah Dunia. Xplore Journal Of Statistics, Vol. 12, No. 1, 12-21

Last update:

No citation recorded.

Last update:

No citation recorded.