skip to main content

IMPLEMENTASI METODE SINGULAR SPECTRUM ANALYSIS (SSA) PADA PERAMALAN INDEKS LQ45

*Teriska Deli  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Iut Tri Utami  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Stock market index forecasting is one of the research studies to obtain stock market index prediction using statistical and computational techniques, one of the techniques that can be used is Singular Spectrum Analysis (SSA). SSA aims to decompose a time series into a set of independent components which have nonstatic tendencies such as trends, oscillations, and noise. SSA can be applied without any prior assumptions such as stationarity, linearity, and normality which seem impossible to fulfill by the fluctuation of stock market index data. One of the stock indices listed in Indonesia Stock Exchange (IDX) is LQ45. The LQ45 index contains 45 selected stocks that have great performance in liquidity and fundamental aspects. LQ45 Index data has a nonstatic structure so it is suitable to be predicted using the SSA method. The forecasting uses the daily data of the LQ45 Index for the period of July 25, 2022 – November 14, 2022 with a window length (L) of 30. From the forecasting process, 4 groups were acquired and Mean Absolute Percentage Error (MAPE) value was 1.69% to forecast the next 20 days. These results indicate that the forecasting process using SSA for LQ45 Index of the period is accurate.
Fulltext View|Download
Keywords: Forecasting; LQ45 Index; Singular Spectrum Analysis (SSA)

Article Metrics:

  1. Anggrainingsih, R., Aprianto, G. R., & Sihwi, S. W. 2015. Time Series Forecasting Using Exponential Smoothing To Predict The Number Of Website Visitor Of Sebelas Maret University. ICITACEE, 14–19
  2. Ardyana, I. M. 2020. Manajemen Investasi dan Portofolio. Lembaga Penerbitan Universitas Nasional
  3. [BEI] Bursa Efek Indonesia. 2021. IDX Stock Index Handbook v1.2. Jakarta: BEI
  4. Golyandina, N., Nekrutkin, V., & Zhigljavsky, A. 2001. Analysis of Time Series Structure: SSA and Related Techniques. United States of America: Chapman and Hall/CRC
  5. Golyandina, N., & Zhigljavsky, A. 2013. Singular Spectrum Analysis for Time Series. Berlin: Springer
  6. Hassani, H. 2007. Singular Spectrum Analysis: Methodology and Comparison. In Journal of Data Science, 5, 239–257
  7. Husnan, S. 1996. Manajemen Keuangan Teori Dan Penerapannya. Yogyakarta: BPFE
  8. Hutasuhut, A. H., Anggraeni, W., & Tyasnurita, R. 2014. Pembuatan Aplikasi Pendukung Keputusan untuk Peramalan Persediaan BahanBaku Produksi Plastik Blowing dan Inject Menggunakan Metode ARIMA(Autoregressive Integrated Moving Average) di CV. Asia. Jurnal Teknik Pomits, 1-6
  9. Leles, M., Mozelli, L., Nascimento Jr, C., Sbruzzi, E., et al. 2018. Study on Singular Spectrum Analysis as a New Technical Oscillator for Trading Rules Design. Fluctuation and Noise Letters, 17, 1–21
  10. Tandelilin, E. 2001. Analisis Investasi dan Manajemen Risiko (Pertama). Yogyakarta: BPFE
  11. Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. 2020. Stock Closing Price Prediction using Machine Learning Techniques. Procedia Computer Science,167
  12. Xiao, J. et al. 2018. A New Approach for Stock Price Analysis and Prediction Based on SSA and SVM. International Journal of Information Technology & Decision Making, 18, 287–310

Last update:

No citation recorded.

Last update:

No citation recorded.