skip to main content

ANALISIS SENTIMEN KEBIJAKAN PENYELENGGARA SISTEM ELEKTRONIK LINGKUP PRIVAT MENGGUNAKAN PENALIZED LOGISTIC REGRESSION DAN SUPPORT VECTOR MACHINE

*Nur Afnita Amalia  -  Department of Statistics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Iut Tri Utami  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Tembalang, Semarang, Indonesia 50275, Indonesia
Yuciana Wilandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Tembalang, Semarang, Indonesia 50275, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The implementation of the Electronic System Operator (ESO) regulation, which imposes blocking sanctions on several ESOs that do not register, has caused a variety of opinions from the public, especially on social media Twitter to raise the hashtag #BlokirKominfo. In this research, sentiment analysis was carry outed to determine the response of Twitter users to the implementation of ESO regulations by MoCI. Sentiment analysis is a textual information extraction process that classifies sentiment into positive and negative categories. The steps that are used including crawling data, text preprocessing, labeling, feature selection, term weighting with TF-IDF and classification using the Penalized Logistic Regression (PLR) with the L1 regularization and Support Vector Machine (SVM) with the RBF kernel. Sentiment classification in PLR is basically finding the optimal weight parameter. The idea of SVM sentiment classification is to find the best hyperplane to separate the data points. Evaluation of classification performance uses the accuracy value calculated through the confusion matrix. The highest percentage of accuracy in sentiment classification results using the PLR is 84,12% and SVM is 83,53%. It means that the PLR algorithm works better than the SVM algorithm in classifying public sentiment towards the implementation of ESO regulations on Twitter.
Fulltext View|Download
Keywords: Electronic System Operator; Sentiment Analysis; Penalized Logistic Regression; Support Vector Machine

Article Metrics:

  1. Alsaeedi, A. dan Khan, M. Z. (2019) ‘A study on sentiment analysis techniques of Twitter data’, International Journal of Advanced Computer Science and Applications, 10(2), pp. 361–374. doi: 10.14569/ijacsa.2019.0100248
  2. Andrew. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance. Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004, 615–622. https://doi.org/10.1145/1015330.1015435
  3. Darwis, D., Pratiwi, E. S. dan Pasaribu, A. F. O. (2020) ‘Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia’, Jurnal Ilmiah Edutic, 7(1), pp. 1–11
  4. Ihsan, I., Nurjanah, D. dan Nurrahmi, H. (2021) ‘Sentiment Analysis RKUHP Pada Twitter Menggunakan Metode Support Vector Machine’, e-Proceeding of Engineering, 8(2), pp. 3521–3536
  5. Kassambara, A. (2019). Machine Learning Essentials Practical Guide in R, First Edition. www.sthda.com/english
  6. Kementerian Komunikasi dan Informatika (2020) ‘Peraturan Kementerian Kominfo No. 5 Tahun 2020’, Kementerian Komunikasi dan Informatika
  7. KemKominfo (2022) Siaran Pers No. 308/HM/KOMINFO/07/2022. Available at: https://www.kominfo.go.id/content/detail/43385/siaran-pers-no-308hmkominfo072022-tentang-pendaftaran-penyelenggara-sistem-elektronik-pse-lingkup-privat/0/siaran_pers (Accessed: 22 September 2022)
  8. Khoerunisa. (2021). Kajian Regresi Logistik Terpenalti Pada Data Dimensi Tinggi. IPB University
  9. Koto, F., dan Rahmaningtyas, G. Y. (2018). Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs. Proceedings of the 2017 International Conference on Asian Language Processing, IALP 2017, 2018-January (December), 391–394. https://doi.org/10.1109/IALP.2017.8300625
  10. Liu, B. (2012) Sentiment analysis and opinion mining, Synthesis Lectures on Human Language Technologies. Morgan dan Claypool Publishers. doi: 10.2200/S00416ED1V01Y201204HLT016
  11. Molnar, C. (2019) Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Second. Morisville, North Carolina: Lulu. Available at: https://christophm.github.io/interpretable-ml-book/index.html
  12. Pekhimenko, G. G. (2006) ‘Penalized Logistic Regression for Classification’, Department of Computer Science University of Toronto, (2)
  13. Prasetyo, E. (2014) Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Edited by A. Sahala. Yogyakarta: ANDI PUBLISHER
  14. Rahmawati, F. (2022) Dirjen Aptika: Kominfo akan Blokir PSE Lingkup Privat yang Tidak Terdaftar, Kominfo. Available at: https://aptika.kominfo.go.id/2022/06/dirjen-aptika-kominfo-akan-blokir-pse-lingkup-privat-yang-tidak-terdaftar/ (Accessed: 22 September 2022)
  15. Rahutomo, F., Saputra, P. Y. dan Fidyawan, M. A. (2018) ‘Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine’, Jurnal Informatika Polinema, 4(2), p. 93. doi: 10.33795/jip.v4i2.152
  16. Reviantika, F., Azhar, Y. dan Marthasari, G. I. (2021) ‘Analisis Klasifikasi SMS Spam Menggunakan Logistic Regression’, Jurnal Sistem Cerdas, 4(2), pp. 37–43. Available at: https://www.cnbcindonesia.com
  17. Rezeki, R. I., Restiviani, Y. dan Zahara, R. (2020) ‘PENGGUNAAN SOSIAL MEDIA TWITTER DALAM KOMUNIKASI ORGANISASI ( Studi Kasus Pemerintah Provinsi DKI Jakarta Dalam Penanganan Covid-19 )’, 4(2), pp. 63–78
  18. Sabrila, T. S., Azhar, Y. dan Aditya, C. S. K. (2022) ‘Analisis Sentimen Tweet Tentang UU Cipta Kerja Menggunakan Algoritma SVM Berbasis PSO’, JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), pp. 10–19. doi: 10.14421/jiska.2022.7.1.10-19
  19. Testiana, G. dan Erlina, D. (2022) Analisis Sentimen Pada Twitter Terhadap Uin Raden Fatah Menggunakan Support Vector Machine, JATISI (Jurnal Teknik Informatika dan Sistem Informasi). doi: 10.35957/jatisi.v9i1.1433
  20. Tyagi, A. dan Sharma, N. (2018) ‘Sentiment Analysis using logistic regression and effective word score heuristic’, International Journal of Engineering and Technology (UAE), 7(2), pp. 20–23. doi: 10.14419/ijet.v7i2.24.11991
  21. Wahid, D. H., dan Azhari. (2016). Peringkasan Sentimen Ekstraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 10(2), 207. https://doi.org/10.22146/ijccs.16625
  22. Wardhani, E. D., Areka, S. K., Nugroho, A. W., Zakaria, A. R., Prakasa, A. D. dan Nooraeni, R. (2020) ‘Sentiment Analysis Using Twitter Data Regarding BPJS Cost Increase and Its Effect on Health Sector Stock Prices’, Indonesian Journal of Artificial Intelligence and Data Mining, 3(1), p. 1. doi: 10.24014/ijaidm.v3i1.8245

Last update:

No citation recorded.

Last update:

No citation recorded.