skip to main content

PERBANDINGAN METODE LVQ DAN BACKPROPAGATION UNTUK KLASIFIKASI STATUS GIZI ANAK DI KECAMATAN SANGKUP

Fahima Alamri  -  Universitas Negeri Gorontalo, Indonesia
*Setia Ningsih  -  Universitas Negeri Gorontalo, Indonesia
Ismail Djakaria  -  Universitas Negeri Gorontalo, Indonesia
Djihad Wungguli  -  Universitas Negeri Gorontalo, Indonesia
Isran K. Hasan  -  Universitas Negeri Gorontalo, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The problem of children nutrition isi still a problem in various regions in Indonesia. Poor or poor nutrition of children is influenced by several factors, namely insufficient food intake and infectious diseases. Undernutrition or poor nutrition can be known from the nutritional status assessment obtained from classifying the nutrional status of children. Classification is a part of data mining that is often used to classify data based on certain data or variables. This study aims to compare the classification of the nutritional status of children using data mining with the learning vector quantization (LVQ) and backpropagation methods. Test were carried out using a comparasion ratio of training and testing data, namely 75% and 25%. From the research results, LVQ is superior with an accuracy of 95.12% and backpropagation of 80.49%.
Fulltext View|Download
Keywords: Status Gizi; Klasifikasi; LVQ; Backpropagation

Article Metrics:

  1. Budianita, E. dan Prijodiprodjo, W. 2013. Penerapan learning vectorquantization (lvq) untuk klasifikasi status gizi anak. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 7(2):155–166
  2. Budianita, E. dan Novriyanto, 2015. Klasifikasi Status Gizi Balita Berdasarkan Indikator Antropometri Berat Badan Menurut Umur Menggunakan Learning Vector Quantization. Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 7
  3. Darmawan, J. B. dan Pratama, E. R. 2021. Klasifikasi status gizi balita menggunakan jaringan syaraf tiruan backpropagation. In Prosiding Seminar Nasional Riset dan Teknologi Terapan (Ritektra), pages E7– E7
  4. Dewi, S. K. 2004. Membangun jaringan syaraf tiruan menggunakan matlab dan excelink. Graha Ilmu
  5. Fausett, L. V. 2006. Fundamentals of neural networks: architectures, algorithms and applications. Pearson Education India
  6. Han, J., Kamber, M., dan Pei, J. 2012. Data mining: concepts and techniques, waltham, ma. Morgan Kaufman Publishers, 10:978–1
  7. Kusumadewi, S. 2003. Artificial intelligence (teknik dan aplikasinya). Yogyakarta Penerbit Graha Ilmu
  8. Nurkhozin, A., Irawan, M. I., dan Mukhlas, I. 2011. Komparasi hasil klasifikasi penyakit diabetes mellitus menggunakan jaringan syaraf tiruan backpropagation dan learning vector quantization. In Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, pages M33–M40
  9. Ningtiyas, A. A., Rohana, T., dan Kusumaningrum, D. S. 2021. Penerapanlearning vector quantization 3 untuk mengklasifikasi gangguan mental pada buruh pabrik. In Conference on Innovation and Application ofScience and Technology (CIASTECH), pages 389–398
  10. Purwanti, E., Chandra, F., Pujiyanto 2013. Desain Sistem Klasifikasi Kelainan Jantung menggunakan Learning Vector Quantization. jurnal fisika dan aplikasinya. volume 9, nomor 2
  11. Purwati Nani. 2016. Klasifikasi Status Gizi Balita Berdasarkan Indeks Antropometri Bb/U Dan Bb/Tb Menggunakan Algoritma Backpropagation. donesian Journal on Networking and Security - Volume 5 No 4 – 2016
  12. Puspitaningrum, D. 2004. Pengantar jaringan syaraf tiruan. Yogyakarta. Penerbit Andi
  13. Sutojo, T., Mulyanto, E., dan Suhartono, V. 2010. Kecerdasan buatan, 2010. Yogyakarta: Penerbit Andi
  14. Wicaksana, I., Aprilia, D., Baskoro, D., dan Ambarwati, L. 2013. Belajar data mining dengan rapidminer. First, Remi Sanjaya

Last update:

No citation recorded.

Last update:

No citation recorded.