slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PERBANDINGAN KINERJA METODE KLASIFIKASI K-NEAREST NEIGHBOR DAN SUPPORT VECTOR MACHINES PADA DATASET PARKINSON | Ridho | Jurnal Gaussian skip to main content

PERBANDINGAN KINERJA METODE KLASIFIKASI K-NEAREST NEIGHBOR DAN SUPPORT VECTOR MACHINES PADA DATASET PARKINSON

Wahyu Anwar Ridho  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
*Arief Rachman Hakim  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The government program in the form of social assistance (bansos) is part of the effort to improve the welfare of the community and ensure basic needs and improve the standard of living of the recipients. However, there are often cases of mistargeting of social assistance programs by the government. Improper data management and Data Terpadu Kesejahteraan Sosial (DTKS) which are not used as the cause of the distribution of social assistance are not well targeted. The data can be analyzed using the classification method to determine whether or not the family accepts the ban from the government. This study classifies the SUSENAS data by comparing K-Nearest Neighbor (KNN) and Support Vector Machines (SVM). The advantage of the KNN method lies in the level of accuracy to solve problems with large data while the SVM method has better performance in various fields of application such as bioinformacs, handwriting recognition, text classification and so on. Based on training data and testing data comparison 85%:15% showed that KNN method had a better classification performance than the SVM method. The accuracy value of KNN method is 80,95% higher than the accuracy value of SVM method is 78,79%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
PERBANDINGAN KINERJA METODE KLASIFIKASI K-NEAREST NEIGHBOR DAN SUPPORT VECTOR MACHINES PADA DATASET PARKINSON
Subject
Type Research Instrument
  Download (222KB)    Indexing metadata
Keywords: SUSENAS; Classification; K-Nearest Neighbor; Support Vector Machines

Article Metrics:

  1. Aulia, S., Hadiyoso, S., Ramadan, D. N. 2015. Analisis Perbandingan KNN dengan SVM untuk Klasifikasi Penyakit Diabetes Retinopati berdasarkan Citra Eksudat dan Mikroaneurisma. Jurnal ELKOMIKA, No. 1, Vol. 3
  2. Badan Pusat Statistik. 2022. BPS, Jakarta. https://www.bps.go.id/index.php/subjek/81 (diakses pada 31 Oktober 2022)
  3. Cover, T. M., dan Hart, P. E. 1967. Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, Vol. IT-13, No. 1
  4. Elgeldawi, E., Sayed, A., Galal, A. R. & Zaki, A. M. 2021. Hyperparameter Tuning for Machine Learning Algorithms Used for Arabic Sentiment Analysis. Informatics 2021, 8, 79. https://doi.org/10.3390/informatics8040079
  5. Gorunescu, F. 2011. Data Mining: Concepts, Models and Techniques Vol. 12. Berlin, Heidelberg: Springer Berlin Heidelberg
  6. Gunn, S. R. 1998. Support Vector Machines for Classification and Regression. Southampton: Department of Electronics and Computer Science University of Southampton
  7. Han, J., Kamber, M., & Pei, J. 2011. Data Mining: Concepts and Techniques (3rd ed.). Elsevier. https://doi.org/10.1016/B978-0-12-381479-1.00001-0
  8. Hafiz, M. I. 2021. Implementasi Algoritma K-Nearest Neighbor (KNN) Dalam Penentuan Jenis Kucing. Palangkaraya: Program Studi Teknik Informatika, Sekolah Tinggi Manajemen Informatika dan Komputer [Skripsi]
  9. Hassanat, A. B., Abbadi, M. A., Altarawneh, G. A. 2014. Solving the Problem of the K Parameter in the KNN Classifier Using an Ensemble Learning Approach. International Journal of Computer Science and Information Security (IJCSIS), Vol. 12, No. 8
  10. Hastie, T., Tibshirani, R., Friedman, J. 2017. The Elements of Statistical Learning. Springer Series in Statistics
  11. Mesafint, D. & Mnjaiah, D. H. 2021. Grid search in hyperparameter optimization of machine learning models for prediction of HIV/AIDS test results. International Journal of Computers and Applications 44(1):1-12
  12. Purnama, N. A. 2022. Bansos Tidak Tepat Sasaran Adalah Maladministrasi. https://ombudsman.go.id/perwakilan/news/r/pwkinternal--bansos-tidak-tepat-sasaran-adalah-maladministrasi (diakses pada 31 Oktober 2022)

Last update:

No citation recorded.

Last update:

No citation recorded.