skip to main content

IMPLEMENTASI METODE NAIVE BAYES CLASSIFIER UNTUK KLASIFIKASI SENTIMEN ULASAN PENGGUNA APLIKASI NETFLIX PADA GOOGLE PLAY

*Jessica Athalia Rieuwpassa  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The COVID-19 pandemic has led to restrictions on activities in public places or facilities, such as cinemas. This has resulted in increased users of streaming service applications such as Netflix where users can access videos or movies online. Netflix users continue to increase from year to year, but its users began to decrease along with other streaming applications. Related to this, sentiment analysis was carried out on the classification of positive and negative reviews given by users on the Google Play website. The classification is expected to produce good accuracy and be analyzed so that it can be useful information for Netflix and potential users of streaming applications. The Naive Bayes Classifier method is a classification algorithm that is easy to apply and has high effectiveness for classifying text. This method utilizes the concept of conditional probability and has a strong assumption of independence. This study uses 2.850 Netflix application review data on Google Play which is then processed and divided into training data and test data with a ratio of 80:20. Classification with the Naive Bayes Classifier produces an accuracy value of 87,33%, a precision value of 87,6%, a recall value of 93,53%, and an F-measure value of 90,47% so it can be concluded that the performance of the Naive Bayes method is good for classifying user reviews of the Netflix.

Fulltext View|Download
Keywords: Sentiment Analysis; Naive Bayes Classifier; Streaming Service Application; Netflix

Article Metrics:

  1. Adiyana, I., & Hakim, F. 2015. Implementasi Text Mining pada Mesin Pencarian Twitter Untuk Menganlisis Topik-Topik Terkait "KPK dan Jokowi". Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS 2015, 570 - 581
  2. Deolika, A., Kusrini, & Luthfi, E. T. 2019. Analisis Pembobotan Kata pada Klasifikasi Text Mining. Jurnal Teknologi Informasi, 3(2), 179 - 184
  3. Dunford, R., Su, Q., & Tamang, E. 2014. The Pareto Principle. The Plymouth Student Scientist, 7(1), 140 - 148
  4. Ghag, K., Shah, K. 2014. SentiTFIDF - Sentiment Classification using Relative Term Frequency Inverse Document Frequency. International Journal of Advanced Computer Science and Applications, 5(2), 36 - 43
  5. Ginantra, N. L. W. S. R., Arifah, F. N., Wijaya, A. H., Septarini, R. S., Ahmad, N., Ardiana, D. P. Y., & Negara, E. S. 2021. Data Mining dan Penerapan Algoritma. Yayasan Kita Menulis
  6. Han, J., Kamber, M., & Pei, J. 2012. Data Mining Concepts and Techniques (3 ed.). USA: Morgan Kaufmann
  7. Hidayatullah, A. F., & Ma'arif, M. R. 2017. Pre-processing Tasks in Indonesia Twitter Messages. Journal of Physics: Conference Series, 801. doi: 10.1088/1742-6596/801/1/012072
  8. Manning, C., Reghavan, P., & Schutze, H. 2009. An Introduction to Information Retrieval. Cambridge: Cambridge University Press
  9. Panji, A. 2016. Netflix Resmi Tersedia di Indonesia. Dalam CNN Indonesia: https://www.cnnindonesia.com/teknologi/20160107083412-185-102757/netflix-resmi-tersedia-di-indonesia Diakses pada 12 Maret 2022
  10. Pintoko, B. M., L., K. M. 2009. Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier. e-Proceedings of Engineering, 5(3), 8121 - 8130
  11. Riyanto, G. P. 2021. Pertumbuhan Pelanggan Netflix Tidak Sesuai Harapan. Dalam Kompas.com: https://tekno.kompas.com/read/2021/04/22/12100017/pertumbuhan-pelanggan-netflix-tidak-sesuai-harapan?page=all Diakses pada 12 Maret 2022
  12. Rozi, I. F., Pramono, S. H., & Dahlan, E. A. 2012. Implementasi Opinion Mining (Analisis Sentimen) untuk Ekstraksi Data Opini Publik pada Perguruan Tinggi. Jurnal EECCIS, 6(1), 37-43
  13. Sari, A. E., Widowati, S., & Lhaksmana, K. M. 2019. Klasifikasi Ulasan Pengguna Aplikasi Mandiri Online di Google Play Store dengan Menggunakan Metode Information Gain dan Naive Bayes Classifier. eProceedings of Engineering, 6(2), 9143 - 9157
  14. Taheri, S., & Mammadov, M. 2013. Learning The Naive Bayes Classsifier with Optimization Models. International Journal of Applied Mathematics and Computer Science, 23(4), 787 - 795

Last update:

No citation recorded.

Last update:

No citation recorded.