BibTex Citation Data :
@article{J.Gauss36927, author = {Chintya Maharani and Budi Warsito and Rukun Santoso}, title = {ANALISIS SENTIMEN VAKSIN COVID-19 PADA TWITTER MENGGUNAKAN RECURRENT NEURAL NETWORK (RNN) DENGAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM)}, journal = {Jurnal Gaussian}, volume = {12}, number = {3}, year = {2024}, keywords = {Covid-19 Vaccine; Twitter; Sentiment Analysis; Recurrent Neural Network; Long Short-Term Memory}, abstract = {The Coronavirus, also known as the Covid-19 pandemic, has reached every country worldwide, including Indonesia. Covid-19 is still prevalent and has killed many people in Indonesia. This makes it impossible to stop Covid-19 from spreading. The government's attempt to stop the Covid-19 pandemic is acquiring the vaccine. The administration of the Covid-19 vaccine has generated much discussion on social media, particularly Twitter. Tweets displaying public opinion on Twitter can be used for sentiment analysis and categorizing public opinion on the Covid-19 vaccine. 20,000 tweets were collected by Twitter crawling between January 10 and January 15, 2022. 3.290 tweets were left after pre-processing and meaningless tweets were eliminated. The data were processed using the Recurrent Neural Network method with the Long Short-Term Memory algorithm to determine its accuracy and identify topics often discussed by the public on Twitter. The LSTM method is capable of storing old information/data. A model with 70% training data, a learning rate of 0.01, 100 LSTM units, 32 batch sizes, 100 epochs, a cross-entropy loss function, and Adam optimizers was used to build the classification in this study. The accuracy value obtained from the performance evaluation of the Long Short-Term Memory model research was 80.34%.}, issn = {2339-2541}, pages = {403--413} doi = {10.14710/j.gauss.12.3.403-413}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/36927} }
Refworks Citation Data :
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics