skip to main content

ANALISIS SENTIMEN VAKSIN COVID-19 PADA TWITTER MENGGUNAKAN RECURRENT NEURAL NETWORK (RNN) DENGAN ALGORITMA LONG SHORT-TERM MEMORY (LSTM)

*Chintya Ayu Maharani  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The Coronavirus, also known as the Covid-19 pandemic, has reached every country worldwide, including Indonesia. Covid-19 is still prevalent and has killed many people in Indonesia. This makes it impossible to stop Covid-19 from spreading. The government's attempt to stop the Covid-19 pandemic is acquiring the vaccine. The administration of the Covid-19 vaccine has generated much discussion on social media, particularly Twitter. Tweets displaying public opinion on Twitter can be used for sentiment analysis and categorizing public opinion on the Covid-19 vaccine. 20,000 tweets were collected by Twitter crawling between January 10 and January 15, 2022. 3.290 tweets were left after pre-processing and meaningless tweets were eliminated. The data were processed using the Recurrent Neural Network method with the Long Short-Term Memory algorithm to determine its accuracy and identify topics often discussed by the public on Twitter. The LSTM method is capable of storing old information/data. A model with 70% training data, a learning rate of 0.01, 100 LSTM units, 32 batch sizes, 100 epochs, a cross-entropy loss function, and Adam optimizers was used to build the classification in this study. The accuracy value obtained from the performance evaluation of the Long Short-Term Memory model research was 80.34%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (262KB)    Indexing metadata
Keywords: Covid-19 Vaccine; Twitter; Sentiment Analysis; Recurrent Neural Network; Long Short-Term Memory

Article Metrics:

  1. Brownlee, J. 2020. Long Short-Term Memory Networks With Python Develop Sequence Prediction Models With Deep Learning. Machine Learning Mastery
  2. Feldman, R., dan Sanger, J. 2007. The Text Mining Handbook: Advanced approaches in Analyzing Unstructured Data. New York: Cambridge University Press
  3. Ghag, K. V., dan Shah, K. 2015. Comparative Analysis of Effect of Stopwords Removal on Sentiment Classification. International Conference on Computer, Communication and Control (IC4). India: Institute of Electrical and Electronics Engineers (IEEE)
  4. Han, J., Kamber, M., dan Pei, J. 2012. Data Mining: Concept and Techniques. San Fransisco: Morgan Kaufmann Publishers
  5. Indraloka, D. S., dan Santosa, B. 2017. Penerapan Text Mining untuk Melakukan Clustering Data Tweet Shopee Indonesia. Jurnal Sains dan Seni ITS, 6(2): 6– 11. https://doi.org/10.12962/j23373520.v6i2.24419
  6. Kemenkes. 2021. 4 Manfaat Vaksin Covid-19 yang Wajib Diketahui. https://upk.kemkes.go.id/new/4-manfaat-vaksin-covid-19-yang-wajib-diketahui
  7. Kemenkes. 2021. Penjelasan WHO tentang Omicron, Varian Baru COVID-19. https://covid19.go.id/p/berita/penjelasan-who-tentang-omicron-varian-baru-covid-19
  8. Li, C., Yuan, X., Lin, C., Guo, M., Wu, W., Yan, J., dan Ouyang, W. 2019. AM-LFS: AutoML for loss function search. Proceedings of the IEEE International Conference on Computer Vision, 2019-October(2), 8409–8418. https://doi.org/10.1109/ICCV.2019.00850
  9. Li, D., dan Qian, J., 2016. Text Sentimen Analysis Based on Long Short-Term Memory. Proceedings 1st IEEE International Conference on Computer Communication and the Internet. Wuhan, 13-15 Oktober, 471–475
  10. Li, S., dan Xu, J. 2018. A Recurrent Neural Network Language Model Based on Word Embedding. Springer, Cham, 368–377. https://doi.org/10.1007/978-3-030-01298-4_30
  11. Liu, B. 2015. Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge: Cambridge University Press
  12. Manning, C., Raghavan, P., dan Schütze, H. 2009. An Introduction to Information Retrieval. Cambridge: Cambridge University Press
  13. Murthy, G. N., Allu, S. R., Andhavarapu, B., Bagadi, M. B. M. 2020. Text based Sentiment Analysis using LSTM. International Journal of Engineering and Technical Research V9(05). DOI: 10.17577/IJERTV9IS050290
  14. Nielsen, F. A. 2011. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. CEUR Workshop Proceedings, 718(March 2011), 93–98
  15. Nurhuda, F., dan Sihwi, S. W. 2014. Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier. ITSMART: Jurnal Ilmiah Teknologi Dan Informasi, 2: 35–42
  16. Olah, C., 2015. Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs
  17. Sembodo, J. E., Setiawan, E. B., dan Baizal, Z. A. 2016. Data Crawling Otomatis pada Twitter. Computational Science, School of Computing, Telkom University. October 2018, 11–16. https://doi.org/10.21108/indosc.2016.111
  18. Torres, J.F., Martínez-Álvarez, F. dan Troncoso, A. A deep LSTM network for the Spanish electricity consumption forecasting. Neural Comput dan Applic 34, 10533–10545 (2022). https://doi.org/10.1007/s00521-021-06773-2
  19. Wardani, F. K., Hananto, V. A., Nurcahyawati, V. 2019. Analisis Sentimen Untuk Pemeringkatan Popularitas Situs Belanja Online di Indonesia Menggunakan Metode Naive Bayes (Studi Kasus Data Sekunder). JSIKA Vol. 08, No. 01
  20. Zhang, Z. 2018. Improved Adam Optimizer for Deep Neural Networks. IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 2018, pp. 1-2, doi: 10.1109/IWQoS.2018.8624183

Last update:

No citation recorded.

Last update:

No citation recorded.