skip to main content

PENERAPAN METODE FUZZY TIME SERIES MENGGUNAKAN PARTICLE SWARM OPTIMIZATION ALGORITHM UNTUK PERAMALAN INDEKS SAHAM LQ45

*Arya Despa Ihsanuddin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tarno Tarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Stocks have a volatile nature and it is difficult to predict the ups and downs. Therefore, stock data forecasting is done by investors to get a picture of future results. Fuzzy Time Series is a time series method that is suitable for forecasting fluctuating stock data because it does not require the fulfillment of assumptions such as normality and stationarity, but the Fuzzy Time Series method has weaknesses in determining intervals. So that in this study, interval optimization will be carried out on Fuzzy Time Series with Particle Swarm Optimization algorithm to predict LQ45 stock index data, Particle Swarm Optimization algorithm is used because it produces more optimal interval values compared to other optimization methods such as Genetic Algorithm. The data to be used is the closing price of the LQ45 stock index on January 5, 2020 to December 26, 2021. Forecasting using the Fuzzy Time Series method produces a SMAPE value of 1.53%, then after optimization using the Particle Swarm Optimization algorithm, the SMAPE value decreases to 1, 27%. Therefore, it can be concluded that optimization using Particle Swarm Optimization on Fuzzy Time Series produces a more optimal forecasting value.

 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (247KB)    Indexing metadata
Keywords: LQ45 Stock Index; Fuzzy Time Series; Interval; Particle Swarm Optimization; SMAPE.

Article Metrics:

  1. Boaisha, S. M., & Amaitik, S. M. 2010. Forecasting model based on fuzzy time series approach. In Proceedings of the 10th International Arab Conference on Information Technology-ACIT . Page. 14 -16
  2. Chen, S. M. 1996. Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, Vol 81. Page 311 - 319. DOI : https://doi.org/10.1016/0165-0114(95)00220-0
  3. Hsu, L. Y. et al. 2010. Temperature prediction and TAIFEX forecasting based on fuzzy relationships and MTPSO techniques. Expert Systems with Applications. Vol 37 No 4 . Page 2756 - 2770. DOI : 10.1016/j.eswa.2009.09.015
  4. Huarng, K. 2001. Effective lengths of intervals to improve forecasting in fuzzy time series. Fuzzy Sets and Systems. Vol 123. Page 387 – 394. DOI : https://doi.org/10.1016/S0165-0114(00)00057-9
  5. Kuo, I. H. et al. 2009. An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization. Expert Systems with applications. Vol 36 No 3. Page 6108 - 6117. DOI : 10.1016/j.eswa.2008.07.043
  6. Marzaen, M. Y. 2019. Penerapan Fuzzy Time Series-Chen Dalam Data Harga Penutupan Saham PT Bank Negara Indonesia (Persero) Tbk.(IDX: BBNI)
  7. Muhammad, M., Wahyuningsih, S., & Siringoringo, M. 2021. Peramalan nilai tukar petani subsektor peternakan menggunakan fuzzy time series lee. Jambura Journal of Mathematics. Vol 3 No 1 , Hal 1-15. DOI : https://doi.org/10.34312/jjom.v3i1.5940
  8. Oktavia, I., & Nugraha, K. G. S. 2018. Faktor-Faktor Yang Mempengaruhi Harga Saham. UNEJ e-Proceeding. Hal 414 – 422
  9. Rachim, F., Tarno, T., & Sugito, S. (2020). Perbandingan Fuzzy Time Series Dengan Metode Chen Dan Metode S.R. Singh (Studi Kasus: Nilai Impor di Jawa Tengah Periode Januari 2014–Desember 2019). Jurnal Gaussian, Vol. 9 No.3. Hal 306 - 315. DOI: https://doi.org/10.14710/j.gauss.v9i3.28912
  10. Song, Q., & Chissom, B. S. 1993. Forecasting enrollments with fuzzy time series—Part I. Fuzzy sets and systems, Vol 54 No 1. Page 1 - 9. DOI : https://doi.org/10.1016/0165-0114(94)90067-1
  11. Sukmawan, N., Umbara, R. F., & Rohmawati, A. A. 2015. Prediksi Indeks Harga Saham Menggunakan Kombinasi Algoritma Particle Swarm Optimization (PSO) Dan Time Variant Fuzzy Time Series. eProceedings of Engineering, Vol 2 No 2. Hal 6814 – 6823
  12. Suyanto. 2018. Machine Learning Tingkat Dasar dan Lanjut. Informatika Bandung
  13. Tauryawati, M. L., & Irawan, M. I. 2014. Perbandingan metode fuzzy time Series cheng dan metode box-jenkins untuk memprediksi IHSG. Jurnal Sains dan Seni ITS. Vol 3 No 2. Hal A34-A39. DOI : 10.12962/j23373520.v3i2.7985
  14. Ujianto, Y., dan Irawan, M. 2015. Perbandingan Performasi Metode Peramalan Fuzzy Time Series yang Dimodifikasi dan Jaringan Syaraf Tiruan Backpropagation. Jurnal Sains dan Seni ITS. Vol 4 No 2. Hal A31-A36. DOI: 10.12962/j23373520.v4i2.11955
  15. Wei, W. S. 2006. Time Series Analysis Univariate and Multivariate Methods. New York: Philadelphia: Pearson

Last update:

No citation recorded.

Last update:

No citation recorded.