skip to main content

PERBANDINGAN MODEL KLASIFIKASI RANDOM FOREST DENGAN RESAMPLING DAN TANPA RESAMPLING PADA PASIEN PENDERITA GAGAL JANTUNG

*Rizwan Arisandi orcid scopus  -  Departement of Computer Science, Faculty of Informatics Engineering, Bina Nusantara University, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Cardiovascular disease that causes heart failure is one of the diseases with the highest mortality rate in the world. Therefore, there is a need for an accurate model to classify heart failure based on clinical information and the lifestyle of patients with the disease, as an alternative solution in administering appropriate drugs. This study compared the classification model of living and deceased heart failure patients based on clinical information and patient lifestyle using the random forest method when using resampling techniques and not using resampling techniques. The results obtained from this study are that the Random Forest model with a combination of the SMOTE and Edited Nearest Neighbors methods is the best model for classifying someone with heart failure as alive or dead. The Random Forest model with a combination of the SMOTE and Edited Nearest Neighbors methods has a high level of classification accuracy in the evaluation model that focuses on recall, namely rf_model_smoteenn can classify 82.96% of patients with living status and 90% of patients with death status.
Fulltext View|Download
Keywords: Random Forest; Resampling; Classification; Heart Failure.

Article Metrics:

  1. Pane, J.P., Simorangkir, L. and Saragih, P.I.S.B. (no date) Faktor-Faktor Risiko Penyakit kardiovaskular Berbasis Masyarakat, Jurnal Penelitian Perawat Profesional. Available at: https://jurnal.globalhealthsciencegroup.com/index.php/JPPP/article/view/1218 (Accessed: April 2, 2023)
  2. Chicco, D. and Jurman, G. (2020) Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone - BMC Medical Informatics and decision making, BioMed Central. BioMed Central. Available at: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5 (Accessed: April 2, 2023)
  3. Thupae, R. et al. (2018) “Machine learning techniques for traffic identification and classifiacation in SDWSN: A survey,” IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society [Preprint]. Available at: https://doi.org/10.1109/iecon.2018.8591178
  4. Wuryani, N. and Agustiani, S. (2021) “Random Forest classifier untuk Deteksi PENDERITA COVID-19 Berbasis citra CT scan,” Jurnal Teknik Komputer, 7(2), pp. 187–193. Available at: https://doi.org/10.31294/jtk.v7i2.10468
  5. Roihan, A., Sunarya, P.A. and Rafika, A.S. (2020) “Pemanfaatan machine learning Dalam Berbagai Bidang: Review paper,” IJCIT (Indonesian Journal on Computer and Information Technology), 5(1). Available at: https://doi.org/10.31294/ijcit.v5i1.7951
  6. Sutoyo, E. and Fadlurrahman, M.A. (2020) “Penerapan smote untuk mengatasi imbalance class Dalam Klasifikasi television advertisement performance rating menggunakan artificial neural network,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), 6(3), p. 379. Available at: https://doi.org/10.26418/jp.v6i3.42896
  7. Muqiit WS, A. and Nooraeni, R. (2020) “Penerapan metode Resampling dalam mengatasi imbalanced data Pada determinan Kasus Diare Pada Balita di Indonesia (Analisis Data SDKI 2017),” Jurnal MSA ( Matematika dan Statistika serta Aplikasinya ), 8(1), p. 19. Available at: https://doi.org/10.24252/msa.v8i1.13452
  8. Prasetya, J. (2022) PENERAPAN KLASIFIKASI NAIVE BAYESDENGAN ALGORITMA RANDOM OVERSAMPLINGDAN RANDOM UNDERSAMPLINGPADA DATA TIDAK SEIMBANG CERVICAL CANCER RISK FACTORS, View of Penerapan Klasifikasi naive Bayes Dengan Algoritma random oversampling Dan random undersampling Pada Data Tidak Seimbang cervical cancer risk factors. Available at: https://ejurnal.unisap.ac.id/index.php/leibniz/article/view/173/101 (Accessed: April 4, 2023)
  9. Sir, Y.A. and Soepranoto, A.H. (2022) “Pendekatan Resampling Data Untuk Menangani Masalah Ketidakseimbangan kelas,” Jurnal Komputer dan Informatika, 10(1), pp. 31–38. Available at: https://doi.org/10.35508/jicon.v10i1.6554
  10. Hossin, Mohammad & M.N, Sulaiman. (2015). A Review on Evaluation Metrics for Data Classification Evaluations. International Journal of Data Mining & Knowledge Management Process. 5. 01-11. 10.5121/ijdkp.2015.5201

Last update:

No citation recorded.

Last update:

No citation recorded.