BibTex Citation Data :
@article{J.Gauss35629, author = {Arya Despa Ihsanuddin and Dwi Ispriyanti and Tarno Tarno}, title = {PENERAPAN METODE FUZZY TIME SERIES MENGGUNAKAN PARTICLE SWARM OPTIMIZATION ALGORITHM UNTUK PERAMALAN INDEKS SAHAM LQ45}, journal = {Jurnal Gaussian}, volume = {12}, number = {1}, year = {2023}, keywords = {LQ45 Stock Index; Fuzzy Time Series; Interval; Particle Swarm Optimization; SMAPE.}, abstract = { Stocks have a volatile nature and it is difficult to predict the ups and downs. Therefore, stock data forecasting is done by investors to get a picture of future results. Fuzzy Time Series is a time series method that is suitable for forecasting fluctuating stock data because it does not require the fulfillment of assumptions such as normality and stationarity, but the Fuzzy Time Series method has weaknesses in determining intervals. So that in this study, interval optimization will be carried out on Fuzzy Time Series with Particle Swarm Optimization algorithm to predict LQ45 stock index data, Particle Swarm Optimization algorithm is used because it produces more optimal interval values compared to other optimization methods such as Genetic Algorithm. The data to be used is the closing price of the LQ45 stock index on January 5, 2020 to December 26, 2021. Forecasting using the Fuzzy Time Series method produces a SMAPE value of 1.53%, then after optimization using the Particle Swarm Optimization algorithm, the SMAPE value decreases to 1, 27%. Therefore, it can be concluded that optimization using Particle Swarm Optimization on Fuzzy Time Series produces a more optimal forecasting value. }, issn = {2339-2541}, pages = {10--19} doi = {10.14710/j.gauss.12.1.10-19}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/35629} }
Refworks Citation Data :
Stocks have a volatile nature and it is difficult to predict the ups and downs. Therefore, stock data forecasting is done by investors to get a picture of future results. Fuzzy Time Series is a time series method that is suitable for forecasting fluctuating stock data because it does not require the fulfillment of assumptions such as normality and stationarity, but the Fuzzy Time Series method has weaknesses in determining intervals. So that in this study, interval optimization will be carried out on Fuzzy Time Series with Particle Swarm Optimization algorithm to predict LQ45 stock index data, Particle Swarm Optimization algorithm is used because it produces more optimal interval values compared to other optimization methods such as Genetic Algorithm. The data to be used is the closing price of the LQ45 stock index on January 5, 2020 to December 26, 2021. Forecasting using the Fuzzy Time Series method produces a SMAPE value of 1.53%, then after optimization using the Particle Swarm Optimization algorithm, the SMAPE value decreases to 1, 27%. Therefore, it can be concluded that optimization using Particle Swarm Optimization on Fuzzy Time Series produces a more optimal forecasting value.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics