skip to main content

PERAMALAN INDEKS HARGA KONSUMEN INDONESIA MENGGUNAKAN METODE SEASONAL-ARIMA (SARIMA)

*ARYA YAHYA  -  BADAN PUSAT STATISTIK, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The pattern of changes in the Consumer Price Index (CPI) is very important to observe from time to time because it is closely related to economic indicators such as the amount of money in circulation, exchange rates, interest rates, and other economic indicators. This study aims to form a model and predict the Indonesian Consumer Price Index using the SARIMA method. The data used in modeling are monthly CPI data for the period January 2012 to February 2022. The best model for predicting Indonesia's CPI is the SARIMA (0,1,1)(0,1,1)12  model. This study examines the CPI value in January and February 2022 which is not included in the estimation model, the estimation results (108,08 and 108,20) are very close to the actual CPI value issued by the Central Statistics Agency.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
PERAMALAN INDEKS HARGA KONSUMEN INDONESIA MENGGUNAKAN METODE SEASONAL-ARIMA (SARIMA)
Subject
Type Research Instrument
  Download (58KB)    Indexing metadata
Keywords: SARIMA, IHK, Seasonal, Indonesia

Article Metrics:

  1. Ahmar, A. S., GS, A. D., Listyorini, T., Sugianto, C. A., Yuniningsih, Y., dkk. 2018. Implementation of the ARIMA (p, d, q) method to forecasting CPI Data using forecast package in R Software. In Journal of Physics: Conference Series (Vol. 1028, No. 1, p. 012189). IOP Publishing
  2. Badan Pusat Statistik. 2022. Indeks Harga Konsumen 90 Kota di Indonesia. Jakarta. Badan Pusat Statistik
  3. Bank Indonesia. 2020. https://www.bi.go.id/id/fungsi-utama/moneter/inflasi/default.aspx. Jakarta. Bank Indonesia
  4. Box, G., Jenkins, G., Reinsel, G. 2016. Time Series Analysis: Forecasting and Control. fifth ed. New Jersey : John Wiley & Sons
  5. Brida, J. G. dan Risso, W. A. 2011. Tourism demand forecasting with SARIMA models–the case of South Tyrol. Tourism Economics, 17(1), 209-221
  6. Chang, X., Gao, M., Wang, Y., dan Hou, X. 2012. Seasonal autoregressive integrated moving average model for precipitation time series. Journal of Mathematics & Statistics, 8(4)
  7. Dindarloo, S., Hower, J. C., Bagherieh, A., dan Trimble, A. S. 2016. Fundamental evaluation of petrographic effects on coal grindability by seasonal autoregressive integrated moving average (SARIMA). International Journal of Mineral Processing, 154, 94-99
  8. Estiko, F. I. dan Wahyuddin, S. 2019. Analysis of Indonesia’s Inflation Using ARIMA and Artificial Neural Network. Economics Development Analysis Journal, 8(2), 151-162
  9. Gujarati, Damodar N. 2011, Econometrics By Example, New York : Palgrave Macmillan
  10. Juhro, S. M., dan Iyke, B. N. 2019. Forecasting Indonesian inflation within an inflation-targeting framework: do large-scale models pay off?. Buletin Ekonomi Moneter dan Perbankan, 22(4), 423-436
  11. Lewis, C.D. (1982). Industrial and business forecasting methods. London: Butterworths
  12. Liu, H., Li, C., Shao, Y., Zhang, X., dkk,. 2020. Forecast of the trend in incidence of acute hemorrhagic conjunctivitis in China from 2011–2019 using the Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ETS) models. Journal of infection and public health, 13(2), 287-294
  13. Mankiw, N. Gregory. 2010. Macroeconomics. Edisi Ketuju. New York: Worth Publishers
  14. Mao, Q., Zhang, K., Yan, W., dan Cheng, C. 2018. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model. Journal of infection and public health, 11(5), 707-712
  15. Montgomery, Douglas C., Jennings, Cheryl L., dan Kulahci, Murat. 2008, Introduction to Time Series Analysis and Forecasting, New Jersey : John Wiley & Sons.Inc
  16. Rohmah, M. F., Putra, I. K. G. D., Hartati, R. S., dan Ardiantoro, L. 2020. Predicting consumer price index cities and districts in East Java with the gaussian-radial basis function kernel. In Journal of Physics: Conference Series (Vol. 1456, No. 1, p. 012026). IOP Publishing
  17. Zahara, S., Sugianto, dan Ilmiddaviq, M. B. 2020. Consumer price index prediction using Long Short Term Memory (LSTM) based cloud computing. In Journal of Physics: Conference Series (Vol. 1456, No. 1, p. 012022). IOP Publishing

Last update:

No citation recorded.

Last update:

No citation recorded.