slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PEMILIHAN MODEL ARFIMA-GPH DAN INTERVENSI MULTI INPUT PADA INDEKS HARGA PERDAGANGAN BESAR INDONESIA | Melani | Jurnal Gaussian skip to main content

PEMILIHAN MODEL ARFIMA-GPH DAN INTERVENSI MULTI INPUT PADA INDEKS HARGA PERDAGANGAN BESAR INDONESIA

Vivi Dina Melani  -  Universitas Syiah Kuala, Indonesia
*Miftahuddin Miftahuddin orcid scopus  -  Universitas Syiah Kuala (USK), Indonesia
Muhammad Subianto  -  Universitas Syiah Kuala, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

IHPBI is an early indicator in consumer price analysis. When the IHPBI increases, it results in inflation. When inflation occurs, Indonesia's economic stability begins to be disturbed, so in order to suppress inflation, the government raises interest rates and when the circulation of money begins to decrease, the prices of goods and services will return to normal. This research to see IHPBI in the next 3 years through the ARFIMA method and multi-input intervention with the condition that the data must contain long memory and have an intervention pattern. This is done to determine the selected model, namely ARFIMA (1,d,0) with a d value of 0.1579, intervention in January 2009 with ARIMA (1,1,1) of order (b=0, s=1, r=1) and November 2013 intervention with ARIMA (1,1,2) order(b=1, s=1, r=0).

Fulltext View|Download
Keywords: IHPBI, ARFIMA, intervention, forecasting

Article Metrics:

  1. Agresti, Alan. (2006). An Introduction to Categorical Data Analysis Second Edition. New York: John Wiley and Sons, Inc
  2. Badan Pusat Statistik Indonesia. (2021a). Indeks Harga Perdagangan Besar Indonesia, 2000-2019. Diakses pada 6 April 2021
  3. Bobbitt, Zach. (2021). Statology Negative AIC
  4. Brockwell, P. J. & Davis, R. A. (2016). Introduction to Time Series and Forecasting (3rd Edition). Switzerland: Springer
  5. Daniaty, D., & Purwanto, D. I. (2020). Indeks Harga Perdagangan Besar Indonesia 2019. Jakarta: Badan Pusat Statistik
  6. Moulines, E. & Soulier, P. (1999). Broadband Log-Periodogram Regression of Time Series with Longrange Dependence. Annals of Statistics. 27(4), 1415-1439
  7. Panjaitan, H., Prahutama, A., & Sudarno. (2018). Peramalan Jumlah Penumpang Kereta Api Menggunakan Metode ARIMA, Intervensi dan ARFIMA. Jurnal Gaussian. 7(1), 96-109
  8. Rosadi, Dedi. (2011). Analisis Ekonometrika & Runtun Waktu Terapan dengan R: Aplikasi untuk Bidang Ekonomi, Bisnis dan Keuangan. Yogyakarta: ANDI
  9. Samsiah, D. N. (2008). Analisis Data Runtun Waktu Menggunakan Model ARIMA (p,d,q) (Aplikasi: Data Pendapatan Pajak Kendaraan Bermotor di Provinsi Daerah Istimewa Yogyakarta) (Tugas Akhir). UIN Sunan Kalijaga, Yogyakarta
  10. Wanto, K. (2006). Analisis Intervensi Data Deret Waktu untuk Peramalan Pendapatan Domestik Bruto Indonesia (Tugas Akhir). Universitas Negeri Jakarta, Jakarta
  11. Wei, William. (2006). Time Series Analysis, Univariate and Multivariate Methods Second Edition. Pearson Education: New York
  12. Yao, J., Tan, C. L., & Poh, H. L. (1999). Neural Networks for Technical Analysis: A Study on KLCI. International Journal of Theoretical and Applied Finance. 2(2), 221-241

Last update:

No citation recorded.

Last update:

No citation recorded.